46 research outputs found

    A Critical Analysis of the Theoretical Basis of Ultrasonic Scattering Measurements

    Get PDF
    There are three elements involved in the backscattering from inhomogeneous media; the scattering properties of a single particle or scattering element, the scattering associated with a group of such particles and the relationship of the scattered wave to the measured signal. Ideally it should be possible to obtain information about the material microstructure from ultrasonic backscattering measurements. However, a number of assumptions and approximations must be made before the problem becomes tractable, and it is the purpose of the present investigation to compare the various approaches available in the literature in an attempt to quantify the errors involved with some of these approximations

    The use of social network analysis to describe the effect of immune activation on group dynamics in pigs

    Get PDF
    The immune system can influence social motivation with potentially dire consequences for group-housed production animals, such as pigs. The aim of this study was to test the effect of a controlled immune activation in group-housed pigs, through an injection with lipopolysaccharide (LPS) and an intervention with ketoprofen on centrality parameters at the individual level. In addition, we wanted to test the effect of time relative to the injection on general network parameters in order to get a better understanding of changes in social network structures at the group level. 52 female pigs (11-12 weeks) were allocated to four treatments, comprising two injections: ketoprofen-LPS (KL), ketoprofen-saline (KS), saline-LPS (SL) and saline-saline (SS). Social behaviour with a focus on damaging behaviour was observed continuously in 10 x 15 min bouts between 0800 am and 1700 pm 1 day before (baseline) and two subsequent days after injection. Activity was scan-sampled every 5 min for 6 h after the last injection in the pen. Saliva samples were taken for cortisol analysis at baseline and at 4, 24, 48, 72 h after the injections. A controlled immune activation affected centrality parameters for ear manipulation networks at the individual level. Lipopolysaccharide-injected pigs had a lower in-degree centrality, thus, received less interactions, 2 days after the challenge. Treatment effects on tail manipulation and fighting networks were not observed at the individual level. For networks of manipulation of other body parts, in-degree centrality was positively correlated with cortisol response at 4 h and lying behaviour in the first 6 h after the challenge in LPS-injected pigs. Thus, the stronger the pigs reacted to the LPS, the more interactions they received in the subsequent days. The time in relation to injection affected general network parameters for ear manipulation and fighting networks at the group level. For ear manipulation networks, in -degree centralisation was higher on the days following injection, thus, certain individuals in the pen received more interactions than the rest of the group compared to baseline. For fighting networks, betweenness decreased on the first day after injection compared to baseline, indicating that network connectivity increased after the challenge. Networks of tail manipulation and manipulation of other body parts did not change on the days after injection at the group level. Social network analysis is a method that can potentially provide important insights into the effects of sickness on social behaviour in group-housed pigs. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Guiding the Design of Synthetic DNA-Binding Molecules with Massively Parallel Sequencing

    Get PDF
    Genomic applications of DNA-binding molecules require an unbiased knowledge of their high affinity sites. We report the high-throughput analysis of pyrrole-imidazole polyamide DNA-binding specificity in a 10^(12)-member DNA sequence library using affinity purification coupled with massively parallel sequencing. We find that even within this broad context, the canonical pairing rules are remarkably predictive of polyamide DNA-binding specificity. However, this approach also allows identification of unanticipated high affinity DNA-binding sites in the reverse orientation for polyamides containing β/Im pairs. These insights allow the redesign of hairpin polyamides with different turn units capable of distinguishing 5′-WCGCGW-3′ from 5′-WGCGCW-3′. Overall, this study displays the power of high-throughput methods to aid the optimal targeting of sequence-specific minor groove binding molecules, an essential underpinning for biological and nanotechnological applications
    corecore