120 research outputs found

    Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion

    Get PDF
    This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding ice-sheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~800m. Use of multiple cosmogenic isotopes on bedrock and erratics (26Al, 10Be, 21Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback that can change ice-sheet thickness, extent, and direction of flow. Indeed, as the subglacial troughs evolve over millions of years, they increase topographic relief; and this changes the dynamics of the ice sheet. © 2013 Elsevier B.V

    Delayed maximum northern European summer temperatures during the Last Interglacial as a result of Greenland Ice Sheet melt

    Get PDF
    This is the author accepted manuscript. The final version is available from the Geological Society of America via the DOI in this record.Here we report a new quantitative mean July temperature reconstruction using non-biting midges (chironomids) from the Danish Last Interglacial (LIG) site Hollerup (spanning 127–116 ka). We find that peak mean July temperatures of 17.5 °C, similar to those of the present day (1961–1990 CE), were reached shortly before the onset of the regional Carpinus pollen zone. Through comparison to terrestrial and marine sequences we demonstrate that peak summer warmth took place some three millennia after the onset of LIG warming in Europe, a marked delay in line with records from the North Atlantic. Crucially, the warmest northern European summer temperatures appear to follow maximum Greenland Ice Sheet mass loss, implying that meltwater substantially reduced Atlantic Meridional Overturning Circulation and depressed European temperatures during the early part of the interglacial.Turney and Fogwill thank the Australian Research Council (grants FL100100195, FT120100004, LP120200724). Thanks to Bjørn Buchardt for providing the C:N data, Angela Self for help with statistical analysis, David Campbell and Alan Bedford for laboratory work, and three reviewers for their constructive comments

    Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction

    Get PDF
    Occupying about 14% of the world\u27s surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on southwest Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52-54°S). Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the 1940s, a phenomenon predating the observational record. Climate reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer. Our results suggest that modern observed high interannual variability was established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific temperatures may now be a permanent feature across the mid- to high latitudes

    Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23Ma

    Get PDF
    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6±2.8m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points

    Tropical and mid-latitude forcing of continental Antarctic temperatures

    Get PDF
    Future changes in atmospheric circulation and associated modes of variability are a major source of uncertainty in climate projections. Nowhere is this issue more acute than across the mid-latitudes to high latitudes of the Southern Hemisphere (SH), which over the last few decades have experienced extreme and regionally variable trends in precipitation, ocean circulation and temperature, with major implications for Antarctic ice melt and surface mass balance. Unfortunately there is a relative dearth of observational data, limiting our understanding of the driving mechanism(s). Here we report a new 130-year annually resolved record of δD – a proxy for temperature – from the geographic South Pole where we find a significant influence from extratropical pressure anomalies which act as "gatekeepers" to the meridional exchange of air masses. Reanalysis of global atmospheric circulation suggests these pressure anomalies play a significant influence on mid- to high-latitude SH climate, modulated by the tropical Pacific Ocean. This work adds to a growing body of literature confirming the important roles of tropical and mid-latitude atmospheric circulation variability on Antarctic temperatures. Our findings suggest that future increasing tropical warmth will strengthen meridional circulation, exaggerating current trends, with potentially significant impacts on Antarctic surface mass balance.C.S.M. Turney, C.J. Fogwill, A.R. Klekociuk, T.D. van Ommen, M.A.J. Curran, A.D. Moy, and J.G. Palme

    Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene

    Get PDF
    The Amundsen Sea Low (ASL) plays a major role in the climate and environment of Antarctica and the Southern Ocean, including surface air temperature and sea ice concentration changes. Unfortunately, a relative dearth of observational data across the Amundsen and Bellingshausen seas prior to the satellite era (post-1979) limits our understanding of the past behaviour and impact of the ASL. The limited proxy evidence for changes in the ASL are primarily restricted to the Antarctic where ice core evidence suggests a deepening of the atmospheric pressure system during the late Holocene. However, no data have previously been reported from the northern side of the ASL. Here we report a high-resolution, multi-proxy study of a 5000-year-long peat record from the Falkland Islands, a location sensitive to contemporary ASL dynamics which modulates northerly and westerly airflow across the southwestern South Atlantic sector of the Southern Ocean. In combination with climate reanalysis, we find a marked period of wetter, colder conditions most likely the result of enhanced southerly airflow between 5000 and 2500 years ago, suggesting limited ASL influence over the region. After 2500 years ago, drier and warmer conditions were established, implying more westerly airflow and the increased projection of the ASL onto the South Atlantic. The possible role of the equatorial Pacific via atmospheric teleconnections in driving this change is discussed. Our results are in agreement with Antarctic ice core records and fjord sediments from the southern South American coast, and suggest that the Falkland Islands provide a valuable location for reconstructing high southern latitude atmospheric circulation changes on multi-decadal to millennial timescales.</p

    Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965.

    Full text link
    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the 'Anthropocene'. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the 'bomb peak' in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II 'Great Acceleration' in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or 'golden spike', marking the onset of the Anthropocene Epoch

    Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years

    Get PDF
    The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO2 levels.Postprin

    Spatial variation in microbial communities associated with sea-ice algae in Commonwealth Bay, East Antarctica

    Get PDF
    Antarctic sea-ice forms a complex and dynamic system that drives many ecological processes in the Southern Ocean. Sea-ice microalgae and their associated microbial communities are understood to influence nutrient flow and allocation in marine polar environments. Sea-ice microalgae and their microbiota can have high seasonal and regional (>1000 km2) compositional and abundance variation, driven by factors modulating their growth, symbiotic interactions and function. In contrast, our knowledge of small-scale variation in these communities is limited. Understanding variation across multiple scales and its potential drivers is critical for informing on how multiple stressors impact sea-ice communities and the functions they provide. Here, we characterized bacterial communities associated with sea-ice microalgae and the potential drivers that influence their variation across a range of spatial scales (metres to >10 kms) in a previously understudied area in Commonwealth Bay, East Antarctica where anomalous events have substantially and rapidly expanded local sea-ice coverage. We found a higher abundance and different composition of bacterial communities living in sea-ice microalgae closer to the shore compared to those further from the coast. Variation in community structure increased linearly with distance between samples. Ice thickness and depth to the seabed were found to be poor predictors of these communities. Further research on the small-scale environmental drivers influencing these communities is needed to fully understand how large-scale regional events can affect local function and ecosystem processes
    • …
    corecore