31 research outputs found

    The Wnt receptor Ryk is a negative regulator of mammalian dendrite morphogenesis

    Get PDF
    This work was supported by the National Health and Medical Research Council (NHMRC) of Australia (Grants 1061512, 1063080). ML and KS were supported by an Australian Postgraduate Award or a University of Queensland International Scholarship, respectively. Imaging work was performed in the Queensland Brain Institute’s Advanced Microscopy Facility and generously supported by an ARC LIEF ï»żgrant ï»ż(LE130100078). We thank Assoc. Prof. Julian Heng (Harry Perkins Institute of Medical Research, Perth, Australia) for providing the ï»żpCA-ß-EGFPm5-Silencer 3 vector, Prof. Joseph LoTurco (University of Connecticut, USA) for the piggyBAC vector, and Prof. Steven Stacker (Peter MacCallum Cancer Centre, Melbourne, Australia) for providing the Ryk knockout mice and the full-length Ryk plasmid. We are also grateful to Mr Luke Hammond for expert advice on microscopy and Ms Rowan Tweedale for critical reading of the manuscript.Peer reviewedPublisher PD

    Monoclonal antibodies targeting surface exposed epitopes of Candida albicans cell wall proteins confer in vivo protection in an infection model

    Get PDF
    ACKNOWLEDGMENTS We gratefully acknowledge Kevin McKenzie and Lucy Wight from the University of Aberdeen Microscopy and Histology Facility for training and access to fluorescence microscopy and for their support and assistance in this work. We also gratefully acknowledge David Stead from Aberdeen Proteomics for his support and assistance with the Candida proteome analysis and the staff of the University of Aberdeen Medical Research Facility for their support and assistance with the mouse studies. This work was supported by the following research grants: the High Throughput and Fragment Screening Fund, Scottish Universities Life Sciences Alliance (SULSA); a seed corn award from the University of Aberdeen Wellcome Trust Institutional Strategic Support Fund; an M.Res. studentship by the Medical Research Council Centre for Medical Mycology at the University of Aberdeen (grant number MR/P501955/1); a Ph.D. studentship from the Institute of Medical Sciences, University of Aberdeen; a Ph.D. studentship from Taibah University and a Saudi Government scholarship; and a Ph.D. studentship by the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement number H2020-MSCA-ITN-2014-642095 (OPATHY). C.A.M., S.P., and A.J.P. contributed to the concept and study design. C.A.M. and S.P. developed the methodology. S.A.A. and L.F. performed recombinant antibody generation and ELISAs. L.F. and M.M. completed IgG reformatting and the production of mAbs for animal studies. M.M., T.H.T., and L.A.W. performed ELISAs and immunofluorescence staining. M.M. performed macrophage assays, and D.M.M. planned, conducted, and analyzed animal studies. C.A.M., S.P., and A.J.P. contributed to funding acquisition and project administration, and C.A.M., S.P., and L.A.W. contributed to the supervision and training of M.Res. and Ph.D. students. S.P. wrote the original draft, and C.A.M., D.M.M., and A.J.P. completed review and editing. All authors had full access to the data and approved the manuscript before it was submitted by the corresponding author(s). S.P., A.J.P., and C.A.M. are inventors on a patent related to the development of antifungal antibodies to surface-exposed epitopes of fungal pathogens owned by the University of Aberdeen. All other authors declare that they have no competing interests.Peer reviewedPublisher PD

    Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Get PDF
    Differentiation of naĂŻve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Development of dim-light vision in the nocturnal reef fish family Holocentridae. II: Retinal morphology

    No full text
    International audienceOntogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system

    Development of dim-light vision in the nocturnal reef fish family Holocentridae. I: Retinal gene expression

    No full text
    Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system

    Developing and adult reef fish show rapid light‐induced plasticity in their visual system

    No full text
    The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in “constant night”. Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life

    The visual ecology of Holocentridae, a nocturnal coral reef fish family with a deep-sea-like multibank retina

    No full text
    The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6–17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision

    Visual system diversity in coral reef fishes

    No full text
    Coral reefs are one of the most species rich and colourful habitats on earth and for many coral reef teleosts, vision is central to their survival and reproduction. The diversity of reef fish visual systems arises from variations in ocular and retinal anatomy, neural processing and, perhaps most easily revealed by, the peak spectral absorbance of visual pigments. This review examines the interplay between retinal morphology and light environment across a number of reef fish species, but mainly focusses on visual adaptations at the molecular level (i.e. visual pigment structure). Generally, visual pigments tend to match the overall light environment or micro-habitat, with fish inhabiting greener, inshore waters possessing longer wavelength-shifted visual pigments than open water blue-shifted species. In marine fishes, particularly those that live on the reef, most species have between two (likely dichromatic) to four (possible tetrachromatic) cone spectral sensitivities and a single rod for crepuscular vision; however, most are trichromatic with three spectral sensitivities. In addition to variation in spectral sensitivity number, spectral placement of the absorbance maximum (λ) also has a surprising degree of variability. Variation in ocular and retinal anatomy is also observed at several levels in reef fishes but is best represented by differences in arrangement, density and distribution of neural cell types across the retina (i.e. retinal topography). Here, we focus on the seven reef fish families most comprehensively studied to date to examine and compare how behaviour, environment, activity period, ontogeny and phylogeny might interact to generate the exceptional diversity in visual system design that we observe
    corecore