48 research outputs found

    A many-body heat engine at criticality

    Get PDF
    We show that a quantum Otto cycle in which the medium, an interacting ultracold gas, is driven between a superfluid and an insulating phase can outperform similar single particle cycles. The presence of an energy gap between the two phases can be used to improve performance, while the interplay between lattice forces and the particle distribution can lead to a many-body cooperative effect. Since finite time driving of this cycle can create unwanted non-equilibrium dynamics which can significantly impair the performance of the engine cycle, we also design an approximate shortcut to adiabaticity for the many-body state that can be used to achieve an efficient Otto cycle around a critical point.Comment: Includes Supplementary Material

    A Feshbach engine in the Thomas-Fermi regime

    Get PDF
    Bose-Einstein condensates can be used to produce work by tuning the strength of the interparticle interactions with the help of Feshbach resonances. In inhomogeneous potentials, these interaction ramps change the volume of the trapped gas allowing one to create a thermodynamic cycle known as the Feshbach engine. However, in order to obtain a large power output, the engine strokes must be performed on a short timescale, which is in contrast with the fact that the efficiency of the engine is reduced by irreversible work if the strokes are done in a non-adiabatic fashion. Here we investigate how such an engine can be run in the Thomas-Fermi regime and present a shortcut to adiabaticity that minimizes the irreversible work and allows for efficient engine operation.Comment: 8 pages, 7 figure

    Correlations in low dimensional quantum systems

    Get PDF
    In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement

    Quenching small quantum gases: Genesis of the orthogonality catastrophe

    Full text link
    We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution when the interaction between the two distinct species is suddenly switched on (quenched). We examine the behavior of the densities, the entanglement, the Loschmidt echo and the spectral function for a large range of inter-species interactions and find that even in such small systems evidence of Anderson's orthogonality catastrophe can be witnessed.Comment: 6 pages, 5 figures, Accepted for publication in Physical Review

    An efficient non-linear Feshbach engine

    Get PDF
    We investigate a thermodynamic cycle using a Bose-Einstein condensate with nonlinear interactions as the working medium. Exploiting Feshbach resonances to change the interaction strength of the BEC allows us to produce work by expanding and compressing the gas. To ensure a large power output from this engine these strokes must be performed on a short timescale, however such non-adiabatic strokes can create irreversible work which degrades the engine's efficiency. To combat this, we design a shortcut to adiabaticity which can achieve an adiabatic-like evolution within a finite time, therefore significantly reducing the out-of-equilibrium excitations in the BEC. We investigate the effect of the shortcut to adiabaticity on the efficiency and power output of the engine and show that the tunable nonlinearity strength, modulated by Feshbach resonances, serves as a useful tool to enhance the system's performance.Comment: 8 pages, 5 figures. To Appear New J. Phys. Focus on Shortcuts to Adiabaticit

    Static and dynamic phases of a Tonks-Girardeau gas in an optical lattice

    Get PDF
    We investigate the properties of a Tonks-Girardeau gas in the presence of a one-dimensional lattice potential. Such a system is known to exhibit a pinning transition when the lattice is commensurate with the particle density, leading to the formation of an insulating state even at infinitesimally small lattice depths. Here we examine the properties of the gas at all lattices depths and, in addition to the static properties, also consider the non-adiabatic dynamics induced by the sudden motion of the lattice potential with a constant speed. Our work provides a continuum counterpart to the work done in discrete lattice models.Comment: 24 pages, 12 figure

    Interaction enhanced quantum heat engine

    Full text link
    We study a minimal quantum Otto heat engine, where the working medium consists of an interacting few-body system in a harmonic trap. This allows us to consider the interaction strength as an additional tunable parameter during the work strokes. We calculate the figures of merit of this engine as a function of the temperature and show clearly in which parameter regimes the interactions assist in engine performance. We also study the finite time dynamics and the subsequent trade-off between the efficiency and the power, comparing the interaction enhanced cycle with the case where the system remains scale-invariant.Comment: 9 pages, 8 figure

    Fermionization of a Few-Body Bose System Immersed into a Bose-Einstein Condensate

    Full text link
    We study the recently introduced self-pinning transition [Phys. Rev. Lett. 128, 053401 (2022)] in a quasi-one-dimensional two-component quantum gas in the case where the component immersed into the Bose-Einstein condensate has a finite intraspecies interaction strength. As a result of the matter-wave backaction, the fermionization in the limit of infinite intraspecies repulsion occurs via a first-order phase transition to the self-pinned state, which is in contrast to the asymptotic behavior in static trapping potentials. The system also exhibits an additional superfluid state for the immersed component if the interspecies interaction is able to overcome the intraspecies repulsion. We approximate the superfluid state in an analytical model and derive an expression for the phase transition line that coincides with well-known phase separation criteria in binary Bose systems. The full phase diagram of the system is mapped out numerically for the case of two and three atoms in the immersed component.Comment: 13 pages, 4 figure
    corecore