134 research outputs found
Brainstem infarction in a patient with internal carotid dissection and persistent trigeminal artery: a case report
<p>Abstract</p> <p>Background</p> <p>The primitive trigeminal artery (PTA) is the most commonly described fetal anastomosis between the carotid and vertebrobasilar circulations.</p> <p>Case presentation</p> <p>We report a 42-year-old patient presenting with internal carotid dissection, and imaging features of brainstem infarction.</p> <p>Conclusion</p> <p>Based on the imaging studies we presume occlusive carotid dissection with extensive thrombosis within a persistent trigeminal artery as the cause of this brainstem ischemia.</p
Hyperacute Detection of Neurofilament Heavy Chain in Serum Following Stroke: A Transient Sign
Serological biomarkers which enable quick and reliable diagnosis or measurement of the extent of irreversible brain injury early in the course of stroke are eagerly awaited. Neurofilaments (Nf) are a group of proteins integrated into the scaffolding of the neuronal and axonal cytoskeleton and an established biomarker of neuro-axonal damage. The Nf heavy chain (NfH(SMI35)) was assessed together with brain-specific astroglial proteins GFAP and S100B in hyperacute stroke (6 and 24 h from symptom onset) and daily for up to 6 days. Twenty-two patients with suspected stroke (median NIHSS 8) were recruited in a prospective observational study. Evidence for an ischaemic or haemorrhagic lesion on neuroimaging was found in 18 (ischaemia n = 16, intracerebral haemorrhage n = 2). Serum NfH(SMI35) levels became detectable within 24 h post-stroke (P < 0.0001) and elevated levels persisted over the study course. While GFAP was not detectable during the entire course, S100B levels peaked at the end of the observation period. The data indicate that significant in vivo information on the pathophysiology of stroke may be obtained by the determination of NfH(SMI35). Further studies are required to evaluate whether NfH(SMI35) in hyperacute stroke reflects the extent of focal ischaemic injury seen on neuroimaging or is a consequence of more diffuse neuro-axonal damage
Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice
Background: FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke. Methods: Middle cerebral artery occlusion (MCAO) in C57BL/6 mice (strain J, groups of 10 animals) was performed with two different durations of ischemia (90 min and 3 h) and FTY720 was applied 2 h after vessel occlusion to study the impact of reperfusion on the protective potency of FTY720. Lesion size was determined by TTC staining. Mice treated with FTY720 or vehicle were sacrificed 48 h after 90 min MCAO to determine the bacterial burden in lung and blood. Results: FTY720 1 mg/kg significantly reduced ischemic lesion size when administered 2 h after the onset of MCAO for 3 h (45.4 +/- 22.7 mm3 vs. 84.7 +/- 23.6 mm3 in control mice, p = 0.001) and also when administered after reperfusion, 2 h after the onset of MCAO for 90 min (31.1 +/- 28.49 mm3 vs. 69.6 +/- 27.2 mm3 in control mice, p = 0.013). Bacterial burden of lung homogenates 48 h after stroke did not increase in the group treated with the immunomodulator FTY720 while there was no spontaneous bacteremia 48 h after MCAO in treated and untreated animals. Conclusions: Our results corroborate the experimental evidence of the protective effect of FTY720 seen in different rodent stroke models. Interestingly, we found no increase in bacterial lung infections even though FTY720 strongly reduces the number of circulating leukocytes
Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo
Serum S-100B adds incremental value for the prediction of symptomatic intracranial hemorrhage and brain edema after acute ischemic stroke
Background: Early identification of patients developing symptomatic intracranial hemorrhage and symptomatic brain edema after acute ischemic stroke is essential for clinical decision-making. Astroglial protein S-100B is a marker of blood-brain barrier disruption, which plays an important role in the formation of intracranial hemorrhage and brain edema. In this study, we assessed the prognostic value of serum S-100B for the development of these complications.
Methods: Serum S-100B levels were measured within 24 h from symptom onset in 1749 consecutive acute ischemic stroke patients from the prospective, observational, multicenter BIOSIGNAL cohort study (mean age 72.0 years, 58.3% male). To determine symptomatic intracranial hemorrhage or symptomatic brain edema, follow-up neuroimaging was performed in all patients receiving reperfusion therapy or experiencing clinical worsening with an NIHSS increase of ⩾4.
Results: Forty six patients (2.6%) developed symptomatic intracranial hemorrhage and 90 patients (5.2%) developed symptomatic brain edema. After adjustment for established risk factors, logS-100B levels remained independently associated with both symptomatic intracranial hemorrhage (OR 3.41, 95% CI 1.7–6.9, p = 0.001) and symptomatic brain edema (OR 4.08, 95% CI 2.3–7.1, p < 0.001) in multivariable logistic regression models. Adding S-100B to the clinical prediction model increased the AUC from 0.72 to 0.75 ( p = 0.001) for symptomatic intracranial hemorrhage and from 0.78 to 0.81 ( p < 0.0001) for symptomatic brain edema.
Conclusions: Serum S-100B levels measured within 24 h after symptom onset are independently associated with the development of symptomatic intracranial hemorrhage and symptomatic brain edema in acute ischemic stroke patients. Thus, S-100B may be useful for early risk-stratification regarding stroke complications
Serum S-100B adds incremental value for the prediction of symptomatic intracranial hemorrhage and brain edema after acute ischemic stroke
Early identification of patients developing symptomatic intracranial hemorrhage and symptomatic brain edema after acute ischemic stroke is essential for clinical decision-making. Astroglial protein S-100B is a marker of blood-brain barrier disruption, which plays an important role in the formation of intracranial hemorrhage and brain edema. In this study, we assessed the prognostic value of serum S-100B for the development of these complications. Serum S-100B levels were measured within 24 h from symptom onset in 1749 consecutive acute ischemic stroke patients from the prospective, observational, multicenter BIOSIGNAL cohort study (mean age 72.0 years, 58.3% male). To determine symptomatic intracranial hemorrhage or symptomatic brain edema, follow-up neuroimaging was performed in all patients receiving reperfusion therapy or experiencing clinical worsening with an NIHSS increase of ⩾4. Forty six patients (2.6%) developed symptomatic intracranial hemorrhage and 90 patients (5.2%) developed symptomatic brain edema. After adjustment for established risk factors, logS-100B levels remained independently associated with both symptomatic intracranial hemorrhage (OR 3.41, 95% CI 1.7-6.9, p = 0.001) and symptomatic brain edema (OR 4.08, 95% CI 2.3-7.1, p < 0.001) in multivariable logistic regression models. Adding S-100B to the clinical prediction model increased the AUC from 0.72 to 0.75 (p = 0.001) for symptomatic intracranial hemorrhage and from 0.78 to 0.81 (p < 0.0001) for symptomatic brain edema. Serum S-100B levels measured within 24 h after symptom onset are independently associated with the development of symptomatic intracranial hemorrhage and symptomatic brain edema in acute ischemic stroke patients. Thus, S-100B may be useful for early risk-stratification regarding stroke complications
n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis.
This is a pre-copyedited, author-produced version of an article accepted for publication in Brain: A Journal of Neurology following peer review. The version of record Frigerio, F., et al. (2018). "n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis." Brain: awy247-awy247. is available online at: xxxxxxx https://doi.org/10.1093/brain/awy247Epilepsy therapy is based on drugs that treat the symptoms rather than the underlying mechanisms of the disease (epileptogenesis). There are no treatments for preventing seizures or improving disease prognosis, including neurological comorbidities. The search of pathogenic mechanisms of epileptogenesis highlighted that neuroinflammatory cytokines [i.e. interleukin-1β (IL-1β), tumour necrosis factor-α (Tnf-α)] are induced in human and experimental epilepsies, and contribute to seizure generation in animal models. A major role in controlling the inflammatory response is played by specialized pro-resolving lipid mediators acting on specific G-protein coupled receptors. Of note, the role that these pathways have in epileptogenic tissue remains largely unexplored. Using a murine model of epilepsy, we show that specialized pro-resolving mechanisms are activated by status epilepticus before the onset of spontaneous seizures, but with a marked delay as compared to the neuroinflammatory response. This was assessed by measuring the time course of mRNA levels of 5-lipoxygenase (Alox5) and 15-lipoxygenase (Alox15), the key biosynthetic enzymes of pro-resolving lipid mediators, versus Il1b and Tnfa transcripts and proteins. In the same hippocampal tissue, we found a similar delayed expression of two main pro-resolving receptors, the lipoxin A4 receptor/formyl peptide receptor 2 and the chemerin receptor. These receptors were also induced in the human hippocampus after status epilepticus and in patients with temporal lobe epilepsy. This evidence supports the hypothesis that the neuroinflammatory response is sustained by a failure to engage pro-resolving mechanisms during epileptogenesis. Lipidomic LC-MS/MS analysis showed that lipid mediator levels apt to resolve the neuroinflammatory response were also significantly altered in the hippocampus during epileptogenesis with a shift in the biosynthesis of several pro-resolving mediator families including the n-3 docosapentaenoic acid (DPA)-derived protectin D1. Of note, intracerebroventricular injection of this mediator during epileptogenesis in mice dose-dependently reduced the hippocampal expression of both Il1b and Tnfa mRNAs. This effect was associated with marked improvement in mouse weight recovery and rescue of cognitive deficit in the novel object recognition test. Notably, the frequency of spontaneous seizures was drastically reduced by 2-fold on average and the average seizure duration was shortened by 40% after treatment discontinuation. As a result, the total time spent in seizures was reduced by 3-fold in mice treated with n-3 DPA-derived protectin D1. Taken together, the present findings demonstrate that epilepsy is characterized by an inadequate engagement of resolution pathways. Boosting endogenous resolution responses significantly improved disease outcomes, providing novel treatment avenues.F.F. was a recipient of a fellowship from UCB Biopharma.
This work was supported by European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant
agreement n. 602102 (EPITARGET to A.V., M.C.W.,
E.A.V., E.A.), Citizen United for Research in Epilepsy
(CURE) (A.V.), the Epilepsy Research UK (M.C.W.), and
in part by NIH grants RO1 NS086423 and RO1NS039587
(M.P.). This work was also supported by a Sir Henry Dale
Fellowship jointly funded by the Wellcome Trust and the
Royal Society (Grant number: 107613/Z/15/Z), funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (Grant number: 677542), and the Barts Charity
(Grant number: MGU0343). The Norwegian Research
Council is acknowledged for funding to T.V.H. (FRIPROFRINATEK
230407)
Correlation of adrenomedullin gene expression in peripheral blood leukocytes with severity of ischemic stroke
Human adrenomedullin (ADM), a 52-amino acid peptide, belongs to the calcitonin/calcitonin gene-related peptide (CGRP)/amylin peptide family. ADM acts as a multifunctional regulatory peptide and is upregulated in response to hypoxia. Previous microarray studies have found increased ADM gene (ADM) expression in peripheral blood cells of patients with stroke, however, it is unknown if an increased ADM level is correlated with severity of human ischemic stroke. This study investigated ADM expression in peripheral blood leukocytes (PBL) of healthy controls and subjects at day 1, week 1 and week 3 postacute ischemic stroke using rtPCR methodology. We found that ADM expression was significantly upregulated on the first day of stroke compared to the healthy subjects and the disease controls; the levels remained elevated for up to week 3. Further, ADM expression at day 1 was correlated with stroke severity measured by the National Institute of Healthy Stroke Scale (NIHSS), the modified Barthel Index (mBI) and the modified Rankin Scale (mRS). This could indicate that ADM expression level is related to the severity of tissue damage. We suggest that increased ADM expression in PBL after acute ischemic stroke is most likely to indicate that these cells have been subjected to hypoxia and that the magnitude of expression is likely to be related to the volume of hypoxic tissue. Hypoxia can affect lymphocytes function and could affect the immune response to stroke. The correlation of ADM expression level with the measures of stroke severity implicates ADM - a potential blood bio-marker in studies of ischemic stroke
Prediction of the survival and functional ability of severe stroke patients after ICU therapeutic intervention
<p>Abstract</p> <p>Background</p> <p>This study evaluated the benefits and impact of ICU therapeutic interventions on the survival and functional ability of severe cerebrovascular accident (CVA) patients.</p> <p>Methods</p> <p>Sixty-two ICU patients suffering from severe ischemic/haemorrhagic stroke were evaluated for CVA severity using APACHE II and the Glasgow coma scale (GCS). Survival was determined using Kaplan-Meier survival tables and survival prediction factors were determined by Cox multivariate analysis. Functional ability was assessed using the stroke impact scale (SIS-16) and Karnofsky score. Risk factors, life support techniques and neurosurgical interventions were recorded. One year post-CVA dependency was investigated using multivariate analysis based on linear regression.</p> <p>Results</p> <p>The study cohort constituted 6% of all CVA (37.8% haemorrhagic/62.2% ischemic) admissions. Patient mean(SD) age was 65.8(12.3) years with a 1:1 male: female ratio. During the study period 16 patients had died within the ICU and seven in the year following hospital release.</p> <p>The mean(SD) APACHE II score at hospital admission was 14.9(6.0) and ICU mean duration of stay was 11.2(15.4) days. Mechanical ventilation was required in 37.1% of cases. Risk ratios were; GCS at admission 0.8(0.14), (p = 0.024), APACHE II 1.11(0.11), (p = 0.05) and duration of mechanical ventilation 1.07(0.07), (p = 0.046). Linear coefficients were: type of CVA – haemorrhagic versus ischemic: -18.95(4.58) (p = 0.007), GCS at hospital admission: -6.83(1.08), (p = 0.001), and duration of hospital stay -0.38(0.14), (p = 0.40).</p> <p>Conclusion</p> <p>To ensure a better prognosis CVA patients require ICU therapeutic interventions. However, as we have shown, where tests can determine the worst affected patients with a poor vital and functional outcome should treatment be withheld?</p
Craniectomy for Malignant Cerebral Infarction: Prevalence and Outcomes in US Hospitals
Randomized trials have demonstrated the efficacy of craniectomy for the treatment of malignant cerebral edema following ischemic stroke. We sought to determine the prevalence and outcomes related to this by using a national database.Patient discharges with ischemic stroke as the primary diagnosis undergoing craniectomy were queried from the US Nationwide Inpatient Sample from 1999 to 2008. A subpopulation of patients was identified that underwent thrombolysis. Two primary end points were examined: in-hospital mortality and discharge to home/routine care. To facilitate interpretations, adjusted prevalence was calculated from the overall prevalence and two age-specific logistic regression models. The predictive margin was then generated using a multivariate logistic regression model to estimate the probability of in-hospital mortality after adjustment for admission type, admission source, length of stay, total hospital charges, chronic comorbidities, and medical complications.After excluding 71,996 patients with the diagnosis of intracranial hemorrhage and posterior intracranial circulation occlusion, we identified 4,248,955 adult hospitalizations with ischemic stroke as a primary diagnosis. The estimated rates of hospitalizations in craniectomy per 10,000 hospitalizations with ischemic stroke increased from 3.9 in 1999-2000 to 14.46 in 2007-2008 (p for linear trend<0.001). Patients 60+ years of age had in-hospital mortality of 44% while the 18-59 year old group was found to be 24% (p = 0.14). Outcomes were comparable if recombinant tissue plasminogen activator had been administered.Craniectomy is being increasingly performed for malignant cerebral edema following large territory cerebral ischemia. We suspect that the increase in the annual incidence of DC for malignant cerebral edema is directly related to the expanding collection of evidence in randomized trials that the operation is efficacious when performed in the correct patient population. In hospital mortality is high for all patients undergoing this procedure
- …