1,853 research outputs found

    On the dynamical breaking of chiral symmetry: a new mechanism

    Get PDF
    We consider a U(1) gauge theory, minimally coupled to a massless Dirac field, where a higher-derivative term is added to the pure gauge sector, as in the Lee-Wick models. We find that this term can trigger chiral symmetry breaking at low energy in the weak coupling regime. Then, the fermion field acquires a mass that turns out to be a function of both the energy scale associated to the higher-derivative term and the gauge coupling. The dependence of the fermion mass on the gauge coupling is non-perturbative. Extensions to SU(N) gauge theories and fermion-scalar interactions are also analyzed, as well as to theories with massive gauge fields. A few implications of these results in the framework of quark-mass generation are discussed.Comment: 15 pages 2 figures, a few comments and 4 references added. To appear in Physical Review

    Spontaneous symmetry breaking in a two-doublet lattice Higgs model

    Full text link
    An SU(2) lattice gauge theory with two doublets of complex scalar fields is considered. All continuous symmetries are identified and, using the nonperturbative methods of lattice field theory, the phase diagram is mapped out by direct numerical simulation. Two-doublet models contain phase transitions that separate qualitatively distinct regions of the parameter space. In some regions global symmetries are spontaneously broken. For some special choices of the model parameters, the symmetry-breaking order parameter is calculated. The pattern of symmetry breaking is verified further through observation of Goldstone bosons.Comment: 24 pages, 13 figures, references added, published versio

    Two flavor color superconductivity in nonlocal chiral quark models

    Full text link
    We study the competence between chiral symmetry restoration and two flavor color superconductivity (2SC) using a relativistic quark model with covariant nonlocal interactions. We consider two different nonlocal regulators: a Gaussian regulator and a Lorentzian regulator. We find that although the phase diagrams are qualitative similar to those obtained using models with local interactions, in our case the superconducting gaps at medium values of the chemical potential are larger. Consequently, we obtain that in that region the critical temperatures for the disappearance of the 2SC phase might be of the order of 100-120 MeV. We also find that for ratios of the quark-quark and quark-antiquark couplings somewhat above the standard value 3/4, the end point and triple point in the T−μT-\mu phase diagram meet and a phase where both the chiral and diquark condensates are non-negligible appears.Comment: 15 pages incl. 5 Postscript figure

    Thermodynamics of lattice QCD with 3 flavours of colour-sextet quarks

    Full text link
    We have been studying QCD with 2 flavours of colour-sextet quarks to distinguish whether it is QCD-like or conformal. For comparison we are now studying QCD with 3 flavours of colour-sextet quarks, which is believed to be conformal in the chiral limit. Here we present the results of simulations of lattice QCD with 3 colour-sextet quarks at finite temperatures on lattices of temporal extent Nt=4N_t=4 and 6, with masses small enough to yield access to the chiral limit. As for the 2-flavour case, we find well-separated deconfinement and chiral-symmetry restoration transitions, both of which move to appreciably weaker couplings as NtN_t is increased from 4 to 6. If this theory is conformal, we would expect there to be a bulk chiral transition at a fixed coupling. For this reason we conclude that for Nt=4N_t=4 and 6, the chiral and hence the deconfinement transitions are in the strong-coupling domain where the theory is essentially quenched. The similarity between the behaviours of the 2 and 3 flavour theories suggested that the Nt=4N_t=4 and 6 transitions for the 2-flavour theory also lie in the strong-coupling domain. The phase structure of both theories is very similar.Comment: 17 pages Latex(Revtex), 7 postscript figure

    Diquark effects in light baryon correlators from lattice QCD

    Full text link
    We study the role of diquarks in light baryons through point to point baryon correlators. We contrast results from quenched simulations with ones with two flavors of dynamical overlap fermions. The scalar, pseudoscalar and axial vector diquarks are combined with light quarks to form color singlets. The quenched simulation shows large zero mode effects in correlators containing the scalar and pseudoscalar diquark. The two scalar diquarks created by gamma_5 and gamma_0gamma_5 lead to different behavior in baryon correlators, showing that the interaction of diquarks with the third light quark matters: we do not see an isolated diquark. In our quark mass range, the scalar diquark created by gamma_5 seems to play a greater role than the others.Comment: 12 pages, 11 figure

    Finite Density QCD: a New Approach

    Full text link
    We introduce a new approach to analyze the phase diagram of QCD at finite chemical potential and temperature, test it in the Gross-Neveu model at finite baryon density, and apply it to the study of the chemical potential-temperature phase diagram of QCD with four degenerate flavors of Kogut-Susskind type.Comment: 21 pages, 9 figures. Some comments and references adde

    Thermodynamics of Two Flavor QCD to Sixth Order in Quark Chemical Potential

    Full text link
    We present results of a simulation of 2-flavor QCD on a 4x16^3 lattice using p4-improved staggered fermions with bare quark mass m/T=0.4. Derivatives of the thermodynamic grand canonical partition function Z(V,T,mu_u,mu_d) with respect to chemical potentials mu_(u,d) for different quark flavors are calculated up to sixth order, enabling estimates of the pressure and the quark number density as well as the chiral condensate and various susceptibilities as functions of mu_q = (mu_u + mu_d)/2 via Taylor series expansion. Furthermore, we analyze baryon as well as isospin fluctuations and discuss the relation between the radius of convergence of the Taylor series and the chiral critical point in the QCD phase diagram. We argue that bulk thermodynamic observables do not, at present, provide direct evidence for the existence of a chiral critical point in the QCD phase diagram. Results are compared to high temperature perturbation theory as well as a hadron resonance gas model.Comment: 38 pages, 30 encapsulated postscript figures, typo corrected, 1 footnote adde

    The QCD phase diagram: A comparison of lattice and hadron resonance gas model calculations

    Full text link
    We compare the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model (HRGM) calculations. Lines of constant energy density ϵ\epsilon have been determined at different baryo-chemical potentials μB\mu_B. For the strangeness chemical potentials μS\mu_S, we use two models. In one model, we explicitly set μS=0\mu_S=0 for all temperatures and baryo-chemical potentials. This assignment is used in lattice calculations. In the other model, μS\mu_S is calculated in dependence on TT and μB\mu_B according to the condition of vanishing strangeness. We also derive an analytical expression for the dependence of TcT_c on μB/T\mu_B/T by applying Taylor expansion of ϵ\epsilon. In both cases, we compare HRGM results on Tc−μBT_c-\mu_B diagram with the lattice calculations. The agreement is excellent, especially when the trigonometric function of ϵ\epsilon is truncated up to the same order as done in lattice simulations. For studying the efficiency of the truncated Taylor expansion, we calculate the radius of convergence. For zero- and second-order radii, the agreement with lattice is convincing. Furthermore, we make predictions for QCD phase diagram for non-truncated expressions and physical masses. These predictions are to be confirmed by heavy-ion experiments and future lattice calculations with very small lattice spacing and physical quark masses.Comment: 25 pages, 8 eps figure

    EoS of finite density QCD with Wilson fermions by Multi-Parameter Reweighting and Taylor expansion

    Full text link
    The equation of state (EoS), quark number density and susceptibility at nonzero quark chemical potential μ\mu are studied in lattice QCD simulations with a clover-improved Wilson fermion of 2-flavors and RG-improved gauge action. To access nonzero μ\mu, we employ two methods : a multi-parameter reweighting (MPR) in μ\mu and β\beta and Taylor expansion in μ/T\mu/T. The use of a reduction formula for the Wilson fermion determinant enables to study the reweighting factor in MPR explicitly and heigher-order coefficients in Taylor expansion free from errors of noise method, although calculations are limited to small lattice size. As a consequence, we can study the reliability of the thermodynamical quantities through the consistency of the two methods, each of which has different origin of the application limit. The thermodynamical quantities are obtained from simulations on a 83×48^3\times 4 lattice with an intermediate quark mass(mPS/mV=0.8)m_{\rm PS}/m_{\rm V}=0.8). The MPR and Taylor expansion are consistent for the EoS and number density up to μ/T∼0.8\mu/T\sim 0.8 and for the number susceptibility up to μ/T∼0.6\mu/T \sim 0.6. This implies within a given statistics that the overlap problem for the MPR and truncation error for the Taylor expansion method are negligible in these regions. In order to make MPR methods work, the fluctuation of the reweighting factor should be small. We derive the equation of the reweighting line where the fluctuation is small, and show that the equation of the reweighting line is consistent with the fluctuation minimum condition.Comment: 20 pages, 11 figures. Accepted to JHEP. Discussions are added. Figures for Taylor coefficients (Fig. 7) are modifie

    Results from Lattice QCD

    Get PDF
    I present our recent results on the critical end point in the \mu_B-T phase diagram of QCD with two flavours of light dynamical quarks and compare them with similar results from other groups. Implications for a possible energy scan at the RHIC are discussed. I also comment briefly on the new results of great relevance to heavy ion collisions from finite temperature lattice QCD simulations on speed of sound, specific heat and on the fate of J/\psi.Comment: Invited Plenary Talk given at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, Kolkata, India, February 8-12, 2005; LaTeX in Journal of Physics G style; 9 pages including figure
    • …
    corecore