819 research outputs found

    Cluster ensembles, quantization and the dilogarithm

    Get PDF
    Cluster ensemble is a pair of positive spaces (X, A) related by a map p: A -> X. It generalizes cluster algebras of Fomin and Zelevinsky, which are related to the A-space. We develope general properties of cluster ensembles, including its group of symmetries - the cluster modular group, and a relation with the motivic dilogarithm. We define a q-deformation of the X-space. Formulate general duality conjectures regarding canonical bases in the cluster ensemble context. We support them by constructing the canonical pairing in the finite type case. Interesting examples of cluster ensembles are provided the higher Teichmuller theory, that is by the pair of moduli spaces corresponding to a split reductive group G and a surface S defined in math.AG/0311149. We suggest that cluster ensembles provide a natural framework for higher quantum Teichmuller theory.Comment: Version 7: Final version. To appear in Ann. Sci. Ecole Normale. Sup. New material in Section 5. 58 pages, 11 picture

    Position space versions of Magueijo-Smolin doubly special relativity proposal and the problem of total momentum

    Full text link
    We present and discuss two different possibilities to construct position space version for Magueijo-Smolin (MS) doubly special relativity proposal. The first possibility is to start from ordinary special relativity and then to define conserved momentum in special way. It generates MS invariant as well as nonlinear MS transformations on the momentum space, leading to consistent picture for one-particle sector of the theory. The second possibility is based on the following observation. Besides the nonlinear MS transformations, the MS energy-momentum relation is invariant also under some inhomogeneous linear transformations. The latter are induced starting from linearly realized Lorentz group in five-dimensional position space. Particle dynamics and kinematics are formulated starting from the corresponding five-dimensional interval. There is no problem of total momentum in the theory. The formulation admits two observer independent scales, the speed of light, cc, and kk with dimension of velocity. We speculate on different possibilities to relate kk with fundamental constants. In particular, expression of kk in terms of vacuum energy suggests emergence of (minimum) quantum of mass.Comment: Latex twice, 14 pages, revised in accordance with the version publishedin Phys. Rev.

    Asymptotic behaviours of the heat kernel in covariant perturbation theory

    Get PDF
    The trace of the heat kernel is expanded in a basis of nonlocal curvature invariants of NNth order. The coefficients of this expansion (the nonlocal form factors) are calculated to third order in the curvature inclusive. The early-time and late-time asymptotic behaviours of the trace of the heat kernel are presented with this accuracy. The late-time behaviour gives the criterion of analyticity of the effective action in quantum field theory. The latter point is exemplified by deriving the effective action in two dimensions.Comment: 22 pages, REVTeX, Alberta Thy 45-9

    Low-Energy Effective Action in Non-Perturbative Electrodynamics in Curved Spacetime

    Full text link
    We study the heat kernel for the Laplace type partial differential operator acting on smooth sections of a complex spin-tensor bundle over a generic nn-dimensional Riemannian manifold. Assuming that the curvature of the U(1) connection (that we call the electromagnetic field) is constant we compute the first two coefficients of the non-perturbative asymptotic expansion of the heat kernel which are of zero and the first order in Riemannian curvature and of arbitrary order in the electromagnetic field. We apply these results to the study of the effective action in non-perturbative electrodynamics in four dimensions and derive a generalization of the Schwinger's result for the creation of scalar and spinor particles in electromagnetic field induced by the gravitational field. We discover a new infrared divergence in the imaginary part of the effective action due to the gravitational corrections, which seems to be a new physical effect.Comment: LaTeX, 42 page

    Black hole puncture initial data with realistic gravitational wave content

    Get PDF
    We present improved post-Newtonian-inspired initial data for non-spinning black-hole binaries, suitable for numerical evolution with punctures. We revisit the work of Tichy et al. [W. Tichy, B. Bruegmann, M. Campanelli, and P. Diener, Phys. Rev. D 67, 064008 (2003)], explicitly calculating the remaining integral terms. These terms improve accuracy in the far zone and, for the first time, include realistic gravitational waves in the initial data. We investigate the behavior of these data both at the center of mass and in the far zone, demonstrating agreement of the transverse-traceless parts of the new metric with quadrupole-approximation waveforms. These data can be used for numerical evolutions, enabling a direct connection between the merger waveforms and the post-Newtonian inspiral waveforms.Comment: 13 pages, 7 figures; replaced with published versio
    • …
    corecore