536 research outputs found

    Predicting crystal structures: the Parrinello-Rahman method revisited

    Full text link
    By suitably adapting a recent approach [A. Laio and M. Parrinello, PNAS, 99, 12562 (2002)] we develop a powerful molecular dynamics method for the study of pressure-induced structural transformations. We use the edges of the simulation cell as collective variables. In the space of these variables we define a metadynamics that drives the system away from the local minimum towards a new crystal structure. In contrast to the Parrinello-Rahman method our approach shows no hysteresis and crystal structure transformations can occur at the equilibrium pressure. We illustrate the power of the method by studying the pressure-induced diamond to simple hexagonal phase transition in a model of silicon.Comment: 5 pages, 2 Postscript figures, submitte

    Design of a low band gap oxide ferroelectric: Bi6_6Ti4_4O17_{17}

    Full text link
    A strategy for obtaining low band gap oxide ferroelectrics based on charge imbalance is described and illustrated by first principles studies of the hypothetical compound Bi6_6Ti4_4O17_{17}, which is an alternate stacking of the ferroelectric Bi4_4Ti3_3O12_{12}. We find that this compound is ferroelectric, similar to Bi4_4Ti3_3O12_{12} although with a reduced polarization. Importantly, calculations of the electronic structure with the recently developed functional of Tran and Blaha yield a much reduced band gap of 1.83 eV for this material compared to Bi4_4Ti3_3O12_{12}. Therefore, Bi6_6Ti4_4O17_{17} is predicted to be a low band gap ferroelectric material

    Glycolipid self-assembly: micellar structure

    Get PDF
    Small-angle scattering is used to investigate a typical glycolipid micelle structure in conjunction with NMR determination of sugar cycle conformation. It is shown that the ellipsoidal shape of the micelle originates from two constraints: sugar rings perpendicular to the interface induce a limited area at the chain-head interface. Together with the bulky hydrated heads, this imposes an ellipsoidal shape

    Super-telomeres in transformed human fibroblasts

    Get PDF
    Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process. Just after telomerase catalytic subunit (hTERT) expression, cen3tel telomeres shortened despite the presence of telomerase activity. At a later stage and concomitantly with transformation, cells started elongating telomeres, which reached a mean length greater than 100kb in about 900 population doublings. Super-telomeres were stable and compatible with cell growth and tumorigenesis. Telomere extension was associated with increasing levels of telomerase activity that were linked to the deregulation of endogenous telomerase RNA (hTERC) and exogenous telomerase reverse transcriptase (hTERT) expression. Notably, the increase in hTERC levels paralleled the increase in telomerase activity, suggesting that this subunit plays a role in regulating enzyme activity. Telomeres ranging in length between 10 and more than 100kb were maintained in an extendible state although TRF1 and TRF2 binding increased with telomere length. Super-telomeres neither influenced subtelomeric region global methylation nor the expression of the subtelomeric gene FRG1, attesting the lack of a clear-cut relationship between telomere length, subtelomeric DNA methylation and expression in human cells. The cellular levels of the telomeric proteins hTERT, TRF1, TRF2 and Hsp90 rose with transformation and were independent of telomere length, pointing to a role of these proteins in tumorigenesis

    Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners

    Full text link
    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct.Comment: 16 pages, 2 table, 7 figure

    Effect of divalent and monovalent cations on calf thymus PCNA-independent DNA polymerase δ and its 3' → 5' exonuclease

    Get PDF
    AbstractRecent data suggest that DNA polymerases α and δ might have a coordinate functional role at the replication fork. In this communication we show that Mg2+ is likely the natural metal activator for both enzymes. Mn2+, a known mutagenic agent, is a competitive inhibitor of Mg2+ for DNA polymerase δ and acompetitive for DNA polymerase α. The 3'→ 5' exonuclease activity associated with DNA polymerase δ is not affected upon addition of Mn2+, Be2+, another mutagenic agent, on the other hand, has an inhibitory effect on the 3' → 5' exonuclease, but not on the DNA polymerase δ. The data presented might explain the mutagenic and carcinogenic potential of these two divalent cations

    Metric tensor as the dynamical variable for variable cell-shape molecular dynamics

    Full text link
    We propose a new variable cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor, makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the densitary character of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first-principles of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review

    Design and synthesis of phosphonoacetic acid (PPA) ester and amide bioisosters of ribofuranosylnucleoside diphosphates as potential ribonucleotide reductase inhibitors and evaluation of their enzyme inhibitory, cytostatic and antiviral activity.

    Get PDF
    Continuing our investigations on inhibitors of ribonucleotide reductase (RNR), the crucial enzyme that catalyses the reduction of ribonu-cleotides to deoxyribonucleotides, we have now prepared and evaluated 5′-phosphonoacetic acid, amide and ester analogues of adenosine, uridine and cytidine with the aim to verify both substrate specificity and contribution to biological activity of diphosphate mimic moieties. A molecular modelling study has been conducted on the RNR R1 subunit, in order to verify the possible interaction of the proposed bioisosteric moieties. The study compounds were finally tested on the recombinant murine RNR showing a degree of inhibition that ranged from 350 μM for the UDP analogue 5′-deoxy-5′- N-(phosphon-acetyl)uridine sodium salt (amide) to 600 μM for the CDP analogue 5′- O-[(diethyl-phosphon)acetyl]cytidine (ester). None of the tested compounds displayed noteworthy cytostatic activity at 100–500 μM concentrations, whereas ADP analogue 5′- N-[(diethyl-phosphon) acetyl]adenosine (amide) and 5′-deoxy-5′- N-(phos-phon-acetyl)adenosine sodium salt (amide) showed a moderate inhibitory activity (EC50: 48 μM) against HSV-2 and a modest inhibitory activity (EC50: 110 μM) against HIV-1, respectively
    corecore