900 research outputs found
Stretched Polymers in Random Environment
We survey recent results and open questions on the ballistic phase of
stretched polymers in both annealed and quenched random environments.Comment: Dedicated to Erwin Bolthausen on the occasion of his 65th birthda
Successful Treatment of Acute Prostatitis Caused by Multidrug-Resistant Escherichia coli With Tigecycline Monotherapy
We present a successful treatment, with tigecycline monotherapy, of acute prostatitis caused by multidrug-resistant Escherichia coli harboring an NDM-1 carbapemenase along with a CMY-2 cephalosporinase and a TEM ESBL
Quenched large deviations for multidimensional random walk in random environment with holding times
We consider a random walk in random environment with random holding times,
that is, the random walk jumping to one of its nearest neighbors with some
transition probability after a random holding time. Both the transition
probabilities and the laws of the holding times are randomly distributed over
the integer lattice. Our main result is a quenched large deviation principle
for the position of the random walk. The rate function is given by the Legendre
transform of the so-called Lyapunov exponents for the Laplace transform of the
first passage time. By using this representation, we derive some asymptotics of
the rate function in some special cases.Comment: This is the corrected version of the paper. 24 page
Routing stemflow water through the soil via preferential flow: a dual-labelling approach with artificial tracers
Stemflow and its belowground funnelling along roots and macropores may play an important role in the soil moisture redistribution in forest environments. In this study, a stemflow experiment on Pinus sylvestris L. (Scots pine) used artificial tracers to view and quantify preferential flow after stemflow infiltration into the soil. A total of 41 L of water labelled with enriched deuterium and brilliant blue FCF were applied at a flow rate of 7 L h−1 to the stem of a pine tree, which corresponds to the stemflow caused by about 50 mm of rainfall. Time domain reflectometry (TDR) probes were installed around the tree trunk to measure the high-resolution volumetric water content. A total of 1 d after the stemflow discharge, soil pits were dug in the different cardinal directions and at varying distances from the tree. Photographs were taken for imaging analysis to quantify preferential flow metrics. Soil samples were taken from the different profiles to analyse the dye concentrations and isotopic compositions. We found that stemflow infiltrated through an annulus-shaped area around the tree base. We observed a heterogenous spatiotemporal soil moisture response to stemflow and the occurrence of shallow perched water tables around the tree trunk. Dye staining demonstrated that stemflow infiltrated primarily along the surface of coarse roots and through macropores. The dye coverage was less extensive close to the soil surface and increased with depth and with proximity to the tree trunk. Lateral flow was also observed, mainly in the shallow soil layers. Our analyses demonstrate the prevalence of preferential flow. Deuterium and brilliant blue FCF concentrations were
significantly correlated. The tracer concentrations decreased with increasing distance from the tree trunk, indicating dilution and mixing with residual soil water. Macropores, coarse roots (living or decayed) and
perched water tables produced a complex network regulating the preferential
flow. Our results suggest that stemflow affects soil moisture distribution,
and thus likely also groundwater recharge and surface runoff. Our study
provides insights into the soil hydrological processes that are regulated by stemflow belowground funnelling and improves our understanding of
forest–water interactions.</p
Lyapunov exponents of Green's functions for random potentials tending to zero
We consider quenched and annealed Lyapunov exponents for the Green's function
of , where the potentials , are i.i.d.
nonnegative random variables and is a scalar. We present a
probabilistic proof that both Lyapunov exponents scale like as
tends to 0. Here the constant is the same for the quenched as for
the annealed exponent and is computed explicitly. This improves results
obtained previously by Wei-Min Wang. We also consider other ways to send the
potential to zero than multiplying it by a small number.Comment: 16 pages, 3 figures. 1 figure added, very minor corrections. To
appear in Probability Theory and Related Fields. The final publication is
available at http://www.springerlink.com, see
http://www.springerlink.com/content/p0873kv68315847x/?p=4106c52fc57743eba322052bb931e8ac&pi=21
Zoonotic potential of guinea pigs: Outbreak of cryptosporidiosis combined with chlamydiosis in a breeding guinea pig herd.
In a guinea pig herd with 26 breeding animals, several individuals of all age categories died (16/26) after three animals had been newly introduced from another herd. Furthermore, the population suffered of apathy, anorexia, severe weight loss and conjunctivitis, as well as abortions and stillbirths. At the same time, the owner experienced a SARS-CoV-2 infection with pneumonia, which was confirmed by taking a PCR test. Chlamydia caviae was detected from the conjunctiva and vagina/uterus in one juvenile animal together with an intestinal Cryptosporidium wrairi infection. Oocysts were found histologically in the small intestine, which was confirmed by PCR. C. wairi is a parasite adapted to guinea pigs with zoonotic potential, which causes diarrhoea with frequent deaths in larger guinea pig herds. C. caviae is also a zoonotic pathogen and often the cause of conjunctivitis, pneumonia and abortions in guinea pigs and can lead to upper respiratory tract disease, conjunctivitis but also severe pneumonia in humans. The increased death cases and the clinical signs could be traced back to an infection with Cryptosporidium wrairi, complicated by a co-infection of C. caviae. We suspect that the abortions were caused by C. caviae, but since the population was treated with various antibiotics effective against chlamydial infections, it was no longer possible to verify this by PCR testing. Unfortunately, more animals succumbed and finally only two animals of the originally 26 were left. With this case report, we would like to point out to veterinarians that guinea pigs can be an important source of zoonotic infections for various pathogens, especially since they are popular pets and often come into close contact with children where hygiene might not always be strictly followed
Widely used, short 16S rRNA mitochondrial gene fragments yield poor and erratic results in phylogenetic estimation and species delimitation of amphibians.
BACKGROUND
The 16S mitochondrial rRNA gene is the most widely sequenced molecular marker in amphibian systematic studies, making it comparable to the universal CO1 barcode that is more commonly used in other animal groups. However, studies employ different primer combinations that target different lengths/regions of the 16S gene ranging from complete gene sequences (~ 1500 bp) to short fragments (~ 500 bp), the latter of which is the most ubiquitously used. Sequences of different lengths are often concatenated, compared, and/or jointly analyzed to infer phylogenetic relationships, estimate genetic divergence (p-distances), and justify the recognition of new species (species delimitation), making the 16S gene region, by far, the most influential molecular marker in amphibian systematics. Despite their ubiquitous and multifarious use, no studies have ever been conducted to evaluate the congruence and performance among the different fragment lengths.
RESULTS
Using empirical data derived from both Sanger-based and genomic approaches, we show that full-length 16S sequences recover the most accurate phylogenetic relationships, highest branch support, lowest variation in genetic distances (pairwise p-distances), and best-scoring species delimitation partitions. In contrast, widely used short fragments produce inaccurate phylogenetic reconstructions, lower and more variable branch support, erratic genetic distances, and low-scoring species delimitation partitions, the numbers of which are vastly overestimated. The relatively poor performance of short 16S fragments is likely due to insufficient phylogenetic information content.
CONCLUSIONS
Taken together, our results demonstrate that short 16S fragments are unable to match the efficacy achieved by full-length sequences in terms of topological accuracy, heuristic branch support, genetic divergences, and species delimitation partitions, and thus, phylogenetic and taxonomic inferences that are predicated on short 16S fragments should be interpreted with caution. However, short 16S fragments can still be useful for species identification, rapid assessments, or definitively coupling complex life stages in natural history studies and faunal inventories. While the full 16S sequence performs best, it requires the use of several primer pairs that increases cost, time, and effort. As a compromise, our results demonstrate that practitioners should utilize medium-length primers in favor of the short-fragment primers because they have the potential to markedly improve phylogenetic inference and species delimitation without additional cost
- …