23 research outputs found

    Activity of different desoximetasone preparations compared to other topical corticosteroids in the vasoconstriction assay

    Get PDF
    Introduction: We report on a double-blind, vehicle-controlled, single-center confirmatory study with random assignment. The purpose of the study was to investigate the topical bioavailability of different topical corticosteroid formulations in healthy human beings focussing on desoximetasone (DM). Materials and Methods: Two DM 0.25% formulations {[}ointment (DM-o) and fatty ointment (DM-fo, water-free); class III corticosteroids], the corresponding active ingredient-free vehicles and three comparators of different strength {[}clobetasol propionate 0.05% (CP 0.05%), fatty ointment, class IV; hydrocortisone (HC) 1%, fatty ointment, class I, and betamethasone (BM) 0.05%, fatty ointment, class III] were tested using the vasoconstriction assay. The degree of vasoconstriction (blanching) in the treatment field was compared to the one found in untreated control fields using chromametric measurements and clinical assessment. Results/Conclusion: DM-o 0.25%, DM-fo 0.25% and BM 0.05% showed similar vasoconstrictive potential, i.e., clear blanching. In fact, both DM preparations were proven to be non-inferior to BM 0.05%, while CP 0.05% was found a little less active. HC 1.0% and the DM vehicles showed no clear-cut vasoconstrictive effect. No adverse events related to the study medications were observed. Good topical bioavailability of both DM formulations was detected by chromametric measurement and clinical assessment. Copyright (C) 2008 S. Karger AG, Basel

    Sun-Induced Changes in Stratum Corneum Function Are Gender and Dose Dependent in a Chinese Population

    No full text
    Previous studies have demonstrated that UVB radiation changes the epidermal permeability barrier and stratum corneum (SC) hydration. It is well known that sun exposure causes erythema, sunburn and melanoma. However, whether daily sun exposure alters SC integrity and epidermal permeability barrier function is largely unknown, especially in Chinese subjects. In the present study, we assess the SC integrity, SC hydration and epidermal permeability barrier function following various doses of sun exposure. A total of 258 subjects (124 males and 134 females) aged 18–50 years were enrolled. A multifunctional skin physiology monitor (Courage & Khazaka MPA5) was used to measure SC hydration and transepidermal water loss (TEWL) on the forearms. In males, basal TEWL was higher with higher doses of sun exposure than with lower doses and control, whereas in females, basal TEWL was higher with lower doses of sun exposure than with higher doses and control. In the group with higher doses of sun exposure, TEWL in females was significantly lower than that in males. The barrier recovery was faster in females than in males in both control and lower-dose groups. In both males and females, barrier recovery was delayed with higher doses of sun exposure. In males, sun exposure did not alter SC hydration, while in females SC hydration was lower with lower doses of sun exposure as compared with control and higher doses of sun exposure. These results demonstrated that sun-induced changes in SC function and SC hydration vary with gender and the extent of sun exposure

    Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer - a practical approach

    No full text
    In the clinical setting, optical coherence tomography (OCT) is applicable for the non-invasive diagnosis of skin cancer and may in particular be used for margin definition prior to excision. In this regard, OCT may improve the success rate of removing tumor lesions more effectively, preventing repetitive excision, which may subsequently result in smaller excisions. In this study, we have aimed to evaluate the applicability of OCT for in vivo presurgical margin assessment of non-melanocytic skin tumors (NMSC) and to describe the feasibility of different scanning techniques. A total number of 18 patients planned for excision of lesions suspicious of NMSC were included in this study. Based on OCT, we defined the specific tumor margins on 19 lesions preoperatively using different scanning modalities. Sixty-one margin points and five complete tumor margins were analysed on 18 patients with a total of 19 lesions including 63% basal cell carcinoma (BCC) (n = 12), 16% (n = 3) squamous cell carcinoma (SCC) and 21% of other types of skin tumors (n = 4) were classified. In 84% of the cases (n = 16), the OCT-defined lateral margins correctly indicated complete removal of the tumor. The surgical margins chosen by the surgeon never fell below the OCT-defined margin. Regarding the techniques of marginal definition, punctual tumor border scan in the perpendicular direction, with an extension of free-run scans for unsure cases can hardly be recommended. This study shows that suspected NMSC can effectively be confirmed, and furthermore, resection margin can be minimized under OCT control without reducing the rate of complete removal. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    Comparison between TEWL and laser scanning microscopy measurements for the in vivo characterization of the human epidermal barrier

    No full text
    The analysis of the skin barrier properties is important in various fields of medical treatment and cosmetology. The development and improvement of topically applied substances require an objective analysis of the skin barrier characteristics. Transepidermal water loss (TEWL) measurement is the standard method to characterize epidermal barrier function. The most important disadvantage of this method though, is that it can be affected by different exogenous and endogenous factors, e.g. water content of the applied formulation and room temperature. In the present study, TEWL measurements are compared to laser scanning microscopic (LSM) measurements, concerning the use of these two methods for the non-invasive in vivo characterization of the epidermal barrier function. The investigations were performed prior and subsequent to treatment of dry skin with a gel mixture, developed for skin treatment after radiotherapy for cancer. The present results indicate that in vivo laser scanning microscopy is an appropriate method for the characterization of the skin barrier structure without interference by external factors. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore