1,004 research outputs found

    Landing-gear impact

    Get PDF
    Report deals with the impact forces in landing gears. Both the landing impact and the taxiing impact have been considered, but drag forces have so far been excluded. The differential equations are developed and their numerical integration is shown, considering the nonlinear properties of the oleo shock strut. A way is shown for determining the dimensions of the metering pin from a given load-time diagram. A review of German literature on landing-gear impact is also presented

    Bouncing Neutrons and the Neutron Centrifuge

    Get PDF
    The recent observation of the quantum state of the neutron bouncing freely under gravity allows some novel experiments. A method of purifying the ground state is given, and possible applications to the measurement of the electric dipole moment of the neutron and the short distance behaviour of gravity are discussed.Comment: 7 pages, 7 figure

    The Generalised Raychaudhuri Equations : Examples

    Get PDF
    Specific examples of the generalized Raychaudhuri Equations for the evolution of deformations along families of DD dimensional surfaces embedded in a background NN dimensional spacetime are discussed. These include string worldsheets embedded in four dimensional spacetimes and two dimensional timelike hypersurfaces in a three dimensional curved background. The issue of focussing of families of surfaces is introduced and analysed in some detail.Comment: 8 pages (Revtex, Twocolumn format). Corrected(see section on string worldsheets), reorganised and shortened slightl

    Structural Theory for Laminated Anisotropic Elastic Shells

    Get PDF
    A linear theory is formulated for analysis of small deflections of thin shells with arbitrary geometrical configuration and laminated of an arbitrary number of layers of different thicknesses, orientations, and anisotropic elastic coefficients. An accurate shell theory (Vlasov's) is used, and the composite-shell constitutive relation incorporates the anisotropic stretching-bending coupling effects considered by Stavsky. For shells of arbitrary geometry, it is found necessary to introduce a new parameter Fij ≡ ∫h z 3Qijdz in the con stitutive relation. This parameter is zero for homogeneous aniso tropic materials and for anisotropic materials laminated symmetri cally with respect to the middle surface. However, for a two-layer filament-wound shell, this parameter can increase the flexural rigidity by 3%, which is greater than a 2% effect considered in a previous layered-anisotropic cylindrical shell analysis.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials

    Full text link
    In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi of the one-dimensional Schroedinger equation, such that the components Psi1 and Psi2 approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well-behaved, even when Psi has many nodes, or is wildly oscillatory. A modification for discontinuous potential stationary stattering states was presented in a second paper [J. Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant velocity trajectory version is also developed.Comment: 16 pages and 14 figure

    Renormalization in Quantum Mechanics

    Full text link
    We implement the concept of Wilson renormalization in the context of simple quantum mechanical systems. The attractive inverse square potential leads to a \b function with a nontrivial ultraviolet stable fixed point and the Hulthen potential exhibits the crossover phenomenon. We also discuss the implementation of the Wilson scheme in the broader context of one dimensional potential problems. The possibility of an analogue of Zamolodchikov's CC function in these systems is also discussed.Comment: 16 pages, UR-1310, ER-40685-760. (Additional references included.

    Centrifugal quantum states of neutrons

    Full text link
    We propose a method for observation of the quasi-stationary states of neutrons, localized near the curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi-potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that could be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop formalism, which describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.Comment: 13 pages, 10 figure
    corecore