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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2612

STRESS PROBLEMS IN PRESSURIZED CABINS

By W. Fligge
SUMMARY

The report presents information on the stress problems in the
analysis of pressurized cabins of high-altitude aircraft not met with
in other fields of stress analysis relating to aircraft. The material
may be roughly divided into shell problems and plate problems, the
former being concerned with the curved walls of the cabin or pressure
vessel and the latter being concerned with small rectangular panels of

~its walls, framed by stiffeners, but not necessarily plane.

INTRODUCTION

The analysis of pressurized cabins of high-altitude aircraft pre-
sents particular stress problems. not usually met with in other fields
of stress analysis relating to alrcraft. It is the purpose of the
present report to gather information on these problems and to make it
easily accessible to aircraft engineers., Some of the work in this field
is presented in references 1 to 10.

This report contains a choice of subjects taken from the theory of
plates and shells which is expected to be useful for the designer of
pressurized airplane cabins or similar lightweight pressure vessels.
This material may be roughly divided into shell problems and plate ’
problems, the former being concerned with the curved walls of the cabin

 or pressure vessel and the latter, with small rectangular panels of its

walls, framed by stiffeners, but not necessarily plane.

As far as shell problems are concerned, some use has been made of
a manuscript for a book on "Stresses in Shells," which the author is
preparing. (See reference 3.) The prospect that this book will be
available some time in 1952 makes it possible to discuss in the present
report several problems which are too complex to explain here in all
their mathematical details.

The pressurized cabin is a rather new element in the airplane
structure and will, in all probability,- undergo future development. In
view of this situation, no attempt has been made to present anything
like a textbook on the subject giving time-tested methods for solving
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various problems, but rather an attempt has been made to show the general
‘1lines of thought which have proved to be useful and to glve suggestions
for their application. ‘

This investigation was carried out at Stanford University uhder the
sponsorship and with the financial assistance of the National Advisory

Committee for Aeronautics.

X,¥s2
g,0

u,v,w

a,b

X,Y,%
NNy

Mo My Mg

SYMBOLS

fectangular coérdinates

angular coordinates

displacements' ‘ i o g

radius of cylinder or spﬁéré-

sides of rectangle; axes of ellipse or'ellipsoid
span of beam

thickness of plate or shell

pressure difference between interior and exterior of cabin

distributed load on shells (force per unit area of middle
surface), in directions @, 6, and radial

normal forces in shells (force per unit length of section),
in direction @, 6, or x

bending moment in plates and shells (moment per unit
length of section)

twisting moment in plates (moment per unit length of
section)

normal stress
shear stress
elastic modulus

Poisson's ratio
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SHELL PROBIEMS

Cylindrical Shell

Circular cylinder.- The fuselage of a high-altitude passenger plane
is usually of circular cross section and is, for most of its length,
almost cylindrical. Some useful information regarding its strength may
be found, therefore, when a circular cylinder closed at both ends by
some kind of bulkhead which permits the air pressure inside tc¢ be greater

than that outside (fig. 1) is considered. The pressure difference will
be called p.

For a homogeneous shell of thickness t +the stresses produced by
this pressure are given by the well-known boiler formulas for hoop stress
c¢ and axial stress oy:

o¢ = pa/t
(1)
o, = pa/2t

The shell of a pressure cabin is reinforced by rings and stringers,
which participate in carrying the load. The stringers will always be
spaced closely enough to make the distribution of the longitudinal stress
on the skin between them practically uniform. With the rings this may
be different., The limiting case, that is, that they too are closely

, 8paced, will be considered here,

In finding the stresses, start from the internal forces per unit
length of section acting in the shell. When a slice of length Ax = 1
is cut out of the shell (fig. 2), the hoop force

Ny =

is found, and when the force pna2 acting on each bulkhead is distributed
over the circumference 23& of the cylinder, the longitudinal force

transmitted by the unit length of a section right across the shell is
found.
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If the shell has no stiffeners, the stresses o¢ and 0y are

found by dividing N¢ and Ny by the wall thickness t, which, of
course, results in the boiler formulas (1). In the cabin shell are
rings of cross section AR at distance 1 from each other and stringers
of cross section Aj at an angular distance B (see fig. 3). If these

areas are distributed over the cross section of the skin, the effective
thicknesses

tg =t + AR
1

(2)
: A
t, =t + —
x ad

are introduced; however, the stresses o¢ and oy are not simply the
quotients N¢/t¢ and Nx/tx (see, e.g., reference 1). The reason for

this is apparent when one considers the fact that the skin is in a two-
dimensional state of stress and therefore for the same strain its stress
is different from that in the stiffeners.

Let the stresses in'the skin be c¢ and o0y as before, in the
stringers, o7, and in the rings, oj. Then Hooke's law will yield the

following relations for the hoop strain €¢ and the longitudinal
strain €y

Ee¢ = c¢ - Vo,
= 0 (35)

Eey = Oy - Vo¢
= o1, (3pb)

E being Young's modulus and V DPoisson's ratio.

On the other hand, the definition of the internal forces is:

Ng = tog + éﬁ o

=% "7 °R "
N, = to, + éL o

X X" a8 L
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Solving the four equations (3) and (4) for the stresses,

g + V(g - BN,

T2 2
(} vE)tgty + it (tg + by - t)
e 2ty + v(tg - t) (58)
. (2 - ve)t¢tx + v2t (t¢ + b, %)
[(l - vz)tx + vea Ng - vily
Op =
3 (1 - v)tgty + v (tg + ty - t)
_pe 202 - vty - V(1 - )t (50)
2 (1 - vB)tgty + vBe(tg + ty - t) |
tgly + V(tx - t)Ng
Oy, =
(1 - Vlogty + V5 (tg + t - t)
e Ctg o+ 2v(tg - t) (50)
B (1 - vB)egty + V(g + b - t)
[ - v2)eg + vae]w, - viNg
LT (1 - vz)t¢tx + v2t(t¢ +ty - t)
a - v3)tg - -
_ %_ (l v )t@ v(2 - v)t (54)

(1 - v2)tgty + vie(tg + ty - t)
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When the rings are far apart, these formulas are no longer appli-
cable, The problem must then be split, with the shell without rings
considered first and the influence of the rings introduced afterward
(see section entitled "Interaction between Shell and Rings"). When
“there are no rings t¢ = t, and the formulas are simplified considerably:

.

BT o

pa(l - 2v) . Vpa

2ty t (6b)

-o'x -

1 - 2V)pa : ’
op, = (1 - 2v)pa (6c)
2ty _
It appears that oy, is always smaller by a factor 1 - 2v than it
would be if it were obtained by simply distributing Ny over the whole
section. For the skin stress oy the factor depends on the ratio

Ay [abt, and if ome writes

pa
Oy = K =——
x =% oy
the factor k will be as shown in figure 4, For Arfabt = O the
boiler formulas are valid, and oy = O.50¢. For AL/aSt = 1.0, the

diagram shows oy = O.hc¢. The difference between these two values
of o0y is small, but both are much less than the hoop stress. This

is very desirable since the over-all bending of the fuselage due to air
forces acting on the control surfaces produces additional stresses oy

vwhich must be superimposed on the stress oy due to cabin pressure. -

Since the stringers take an important share of the axial load, it _
is not good practice to interrupt them at the rings. Care should be
taken to insure that the forces carried by the stringers can go straight

.through from one bulkhead to the other, or to the end of the cabin shell.

Double cylinders.- The circular cross section is certainly the best
one, both for aerodynamic and structural reasons. However, it has some
practical disadvantages when used as a passenger cabin., Most serious




NACA TN 2612 7

is the fact that a horizontal floor must necessarily be built in,
requiring additional weight and leaving beneath it space which is not
easily used.

This situation is improved by a cross section which, with some
exaggeration, is shown in figure 5. It consists of parts of two circles
and a straight horizontal tie between them.

Begin with a discussion of the weight of this structure. Under the

action of an internal pressure p the hoop stresses in the upper cylin-
der U¢l and in the lower cylinder U¢2 will Dbe:

dgy = Paqfty

0'¢2 = Péeltz

The stress in the tie follows from the equilibrium at its ends (fig. 6):

a3t3 °¢1t1 cos ay + c¢2t2 cos an

p(al COS aj + a5 cos “2)

If %y, to, and ty are chosen such that the three stresses are all
equal to the same value o given by the allowable stress in the material,

+. =P
tl --&-al
tp =2 ap
- _ D
~t3 = E(al cos ay + a5 cos a,?)

The material invested in the structure is given by the ares Ay

of its metallic cross section. The two circles contribute to it
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Etlal(:t - d.-l) + 2toas (:t - cz.e) = %[aalz(n - or,l) + 2&22(1[ - a.z)]
and the tie c;ontributes
2tgc = 2 %(al cos &y + 8y cOS /ae)c

Now

(¢}
I

= 8y sin ay

an sin an

and hence
2tc=22(a2cosa$ina +a2cosa2'sincn2)
3 =\a1 1 1+ 82

P
o

]

(a12 sin Eocl + a22 sin 2@2)

Summing up the three parts, the totel metallic cross section is found
to be:

Am = 2 %E12<1( -y + -é— sin 2@1) + agg(n - ap + -;]2; sin 2a2>:|

On the other hand, the area of the hollow cross section Ay
describes the useful space in the fuselage, It is

Ay = alg(n - + -]2= sin 2“‘1) + agg(n - + %— sin 2@2)

It is seen that the ratio of the two areas
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does not depend upon the particular choice of the dimensions of the
cross section., For a simple circular cylinder of radius a there is
obtained by similar reasoning:

t = 2 a
o]
Ay = 2nat
= 25 % a2
Ay = 1(8.2
and hence
’ P

as before. This indicates that for the same inside space the same
- - structural weight is required and one is freed from weight considera-
tions when choosing that combination of a5 85 Gy and %y which

. seems best for other reasons The validity of this result is restricted
to cross sections where the tie acts in tension, and this is exactly the
configuration which is most interesting in aircraft construction. In
practical applications, of course, additional stresses will change the
picture to some extent, and the weight of different shapes will not be
equal, but the important fact remains that there is no first-order loss
or gain in choosing one or another of the sections compared.

_ Interaction between Shell and Rings

Bending of a cylindrical shell.- If the rings are not spaced closely
enough to be considered as part of an anisotropic shell, the problem
illustrated by figure T must be treated., Cut the shell in the plane of
the ring and at its connection with the ring. The pressure p applied
to the shell will lead to a hoop strain e¢ which may be found from

Hooke's law (3) and formulas (6a) to (6b) and consequently will lead to
a radial displacement

£
L]

o ae¢

B . \ _ paz(% -2 v(1l - 2V)>

E \ t 2ty
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The ring receives no load and, therefore, has no deformation. In order
to close the gap between the ring and the deformed shell, add shearing
forces T per unit length of the edges. In the ring of cross section
AR these shearing forces produce the stress

. 2Ta
R = —
AR
and hence the radial displacement
o 7 o
2Ta )

W = ‘

R EAp (7

(More exactly, aa; should be written instead of a2, where &y 1is the

radius of the center line of the ring.)

For the shell, the force T is & transverse shear Qy which pro-
duces bending stresses. In order to find them, some details of the
theory of bending of an anisotropic cylinder must be developed. It is
necessary to consider only the internal forces and moments shown on the
shell element in figure 8: The hoop force N¢, the bending moment M,

and the transverse shear Qy. They are all functions of x (fig. T),
as is the radial deflection w, '

The forces and moments must satisfy the conditions of equilibrium
of the shell element. They yield two equations:

=0y (8

+ Ng =0 (8b)
which, after elimination of Q,, give the relation:

2, .
a d Zk + Ng = 0 o (9)
ax | :

The hoop force N¢ produces & hoop strain e¢/ which may be obtained from
equations (32) and (5a) to (5¢) with Ny = 0. This strain leads to a

radial displacement

-~

s
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W=8€¢

ty - vz(tx - t)
Etty

N¢a
g
= D¢

tx

The constant I¢ = Et s, Which has the dimension of a force

ty - Vo (ty - t)
per unit length, is the extensional rigidity of the shell in the direc-

tion of the hoop forces., Figure 9 shows that, in the range of practical
interest, D¢ is only slightly greaster than Et, and it is safe to say

(10)

i

The bending moment My produces a curvature d,gw/dx2 of the generators.
If I 4is the moment of inertia of the cross section of a stringer and
the attached skin of width a® divided by the distance ad of the
stringers, '
AMX=EI§-2—W§ (11)
dx

Here too the coefficlent EI d1s slightly influenced by the fact that the
skin has a two-dimensional stress system. This refinement of the theory
will not be discussed here, There is another circumstance, perhaps even
more serious, which will also be neglected here: The centroid of the
section to which I is referred is not exactly at the distance a from
the axis of the cylinder but at a somewhat shorter distance. This
influence may be studied with a more general set of equations, but since
the difference of the two radil is not great, it will probably not be

of first-order importance: however, it may be responsible for some
second-order effects which otherwise might not be explained.

By introducing the expressions for N¢ and M, 1into equation (9),
the differential equation of the problem is obtained:

a

-.EI-==-+Et1é=O (12)
axh a
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»

The general solution of this equation consists of four terms. Only
those which are symmetrical with respect to the plane x = O are
needed. They are:

KX KX . KX _._ KX
w=20C cosh — ¢c08 =— + C» sinh — sin —
a a 2 a

a
. = 4 tae
\Jhl
The boundary conditions-at x = 1/2 are that the slope dw/d_x must be
zero and that the deflection must assume a pertain value wy. (This

with

will be discussed later.)
dw)
— = 0
(dx x=1/2

Wx=1/2 = V1
Introducing the solution here, C; and Cp are found and then

W
W= = Ecosh B sin B +
cosh B sinh B + cos B sin B

sinh B cos B) cosh 2px cos 26x + (cosh B sin B -

1 1
sinh B cos B) sinh -2-%5 sin gs—}j
with

i
o~
=

gy

2\2a
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The internal forces can now be found easily. From equations (8a) and (11)
it follows that

1]
3|
H

Et ZWl

Gosh B sin B cosh 2%5 sin EEE +

—QaQB(cosh B sinh B + cos B sin B) l

sinh B cos B sinh 2%5 cos §%§>

For x = 2/2 this 1s the force T applied to the edge of the shell:

- Etlwy cosheB - cosgﬁ (13)
" " 2223 cosh B sinh B + cos B sin B
Combining this with the preceding formula
cosh B sin B cosh EEE sin §E§ + gsinh B cos B sinh §E£ cos 295
Q =T 1 1 , 1 1

. coshEB - cosEB

Introducing the solution w into equations (11) and (10) and expressing
w, by T, -
1 2

My

i
=
[}

1 1 I: .
-7 = cosh sin -
4 cosheﬁ - cos2p ( P P

[}

sinh B cos B) cosh 2%5 cos ggﬁ -

(cosh B sin B + sinh B cos B) sinmh 3‘;’—"— sin 3‘%
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and, adding the hoop force due to the pressure p,

LI}

pa + — o

g

2ap 1
L cosheﬁ - cosEB

]

pa-T

EFosh B‘sin B +\

sinh B cos B) cosh 2%5 cos 2%3 +

(cosh B sin B - sinh B cos B) sinh 3‘;-’5 sin g-'li’-j

The magnitude of the shearing force T still has to be found. Write,
for abbreviation, T = -kwq, where k is defined by equation (13).

Then the following deformations are found: Under the action of the
internal pressure alone the shell has the deflection w, given at the
beginning of this section, and the ring, none, The additional load T
bends the edge of the shell back, producing W) = -T/k, and the ring

has a positive displacement wR = 2Ta2/EAR as was seen earlier,

Now, under the combined action of pressure p and shear T, the
radial displacement of shell and ring must be -the same

T
Yo "% T ¥R :
- 2Ta?
EAR
From this equation
W
T = —5
2a




~
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Upon the introduction of w, and k this yields

g(} = _ v(l - 2V)>

2 t 2

T = tx (1%)
1. B (cosh 8 sinh B + cos B sin B)

cosh2B - coseﬂ

AR T 1t

With the numerical value of T from this formula, one may obtain from
the preceding formulas values for N¢ and M,. The complete solution

of the mechanical problem of the interaction of the shell and the rings
is now obtained.,

The shear depends on many parameters, and no attempt has been made
here to represent formula (14) by diagrams. However, the distribution
of N¢ and M, along a generator of the cylinder depends essentially
on PB. When P is small (closely spaced rings, heavy stringers), the
picture looks somewhat like figure 10(a), and the case where it is
adequate to represent the influence of the stringers by the effective
thickness tg as defined by equation (2) is approached. But when B
is great (rings far apart, light stringers), the internal forces are
like those sketched in figure 10(b): In this case the influence of each
ring is locally restrained.

Ploating skin.- From figure 10 it appears that there is not much
virtue in providing rings to help the skin carry the cabin pressure

,because the skin alone can do that well enough and the rings only cause

trouble. The rings disturb the simple stress system considerably;, and

the force 2T +transmitted from the shell to the ring produces a highly
undesirable tensile stress in the rivets which connect the skin to the

ring. ' »

However, the rings are needed for many important purposes. They
help to introduce the local load gently into the shell, they support
the stringers against buckling, and they stiffen the shell as a whole
to prevent a collapse by large-scale buckling. The problem is, how
does one make the rings available for all these purposes without
introducing the forces T7? ,

The solution is the floating skin. Its basic idea may be explained
from equation (14). If the rings are very weak, AR —> O, the denomi-

nator of this formula becomes infinite, and T = O. The term 2/AR
comes from wg, equation (7), and represents the deformability of the
ring by a radial load T, or, more exactly, the radial displacement of
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those points where the ring 1s fixed to the shell (skin and stringers).
This deformability may be Increased easily without weakening the ring.
It is only necessary to intersperse an elastic element between the ring
proper and the shell (including stringers) as it is indicated by the
sketch, figure 11. Formula (7) must then be replaced by

\

¢ being an elastic constant depending on the shape and size of the
connecting link between ring and skin. In formula (14) it is then
necessary to write

2 E
' AR 8.2

instead of 2/AR and now there is the possibility of making the denomi~

nator as great as desired. Of course, such a flexible connection is
only worth while if the denominator in equation (14) is appreciably

increased by adding the term Ec/ae.

Doors and Windows

When the cabin is under pressure, the door must, of course, be
closed, but it cannot be expected that the door panel will be very
efficient in transmitting hoop forces N¢ or longitudinal forces N,

across the door opening. Both have to be carried around it by the door
frame, and this disturbance of the smooth flow of forces will certainly
lead to an increase in structural weight. In order to keep this increase
as small as possible, some detalls of the local stress system will have
to be studied. '

Since the door needs & frame, it is reasonable to extend the lateral
parts of this freme all around the shell as two of 1ts rings. Outside of
the part of the fuselage limited by these rings the hoop force does not
meet with any obstruction., The problem is, what must be done with the
forces which are intercepted by the sill and the head of the frame? With
the usual dimensions of fuselages and doors these forces are considerable,
A door freme strong enough to resist them would be a heavy structure,

o
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but worse than that, it would not accept the load. It would deflect in
the direction of the pull, and the deflection would lead to a decrease
of the pull.

It seems wise, therefore, to allow the shell itself to do that which
it can do so easily and to give the horizontal members of the door frame
only that stiffness which is required to press the door firmly against
it, that is, bending stiffness against radial forces, It is necessary,
then, to solve the following mechanical problem (fig. 12): A cylindrical
shell extending over an angle a < 360° is limited by two circular rings
and by two straight end members. These end members have no rigidity
against bending in the tangential plane to the cylinder, but they have
enough cross section to be considered as inextensible for our purposes.
The shell is subjected to an internal pressure p. v

The stress system set up under these conditions may be split into
two parts: One is a hoop force N¢ = pa, acting everywhere (also on the

straight edge) and fésisting to the load p; the other one is a system of
internal forces produced by an external load N¢ = -pa applied to the

edge members and canceling there the force pa of the elementary solution.

The task which is now to be done is to find this second stress system.
In the theory of shells it is shown that the tangential load -pa cannot
be carried by the shell without resorting to bending stresses. There are
different methods of treating this bending problem; this is a simple one.
Although its application in this case may not be entirely legitimate,
it will give a fair idea of what is heappening, and that should be enough.

, The problem may be reduced to a differential equation for the
bending moment M¢ (for the notations, see figs. 8 and 12; for more

details see reference 2, p. 139, or reference 3):

* e o0
LIRS

M¢‘ + (2 + V)M¢"°“ + 2M¢”' * (l + 2‘\})M¢""°"+ 2(2 + V)M¢"°° +

1-ve
k

M¢:: + VM¢"""°. + (l + V)2M¢""'° + (2 + V)M¢"°' + M¢"" =0 (15)
Here dots indicate derivatives with respect to ¢, primes indicate
derivatives with respect to the dimensionless coordinate x/a, and k

is the shell parameter
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It may easily be verified that

M¢ = Cem¢ sin Ax

a
is a solution of the differential equation. Here A 1is still an
arbitrary constant. Write

3 = Dre
1
B N b
wvhere n is a positive integer; the discussion will later be confined
to n =1,

When the solution is introduced into the differential equation, it
is found that m must satisfy a certain algebraic equation. After some
drastic simplifications (reference 4) it may be brought into the

- following form: '

: f

- v

(m2 + 1)2ml‘L + 1-v- Xh =0

k

This equation has the complex solutions

m = $\|- _é_f leza_r i;@\’_l__rv__z -_t\’i’\'tinzg (16)

with

¢ = \l’—‘édé 302 - v®)

1\t

When any one of the eight complex values m is introduced into the
formula for M¢, one elementary solution is obtained. They all show a

variability in x-direction according to sin nnx/l. The same factor will
appear in the corresponding hoop forces N¢. When it is desired to use

these solutions to describe the stresses due to a uniform distribution

K

N¢ = ~-pa
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of the hoop force on the edge ¢ = 0, this distribution has to be
resolved into its harmonic components:

‘-pa = - hpa sin XX + l-sin 3mx s X sin 27X ..
= 13 1 5 1

The discussion will be confined here to the first term of this series
which will show™he essential features of the stress pattern. Corre-
spondingly, set n = 1,

The set of eight elementary solutions which is obtained from the
eight possible values of m may be replaced by an equivalent set of
eight linear combinations, each of which is a product of an exponential
and a trigonometric function of nl¢ or n2¢, where

Ky = Q\]'E cos 22,5°

Ky = L\T sin 22,59

Using a suitable set of boundary conditions to determine the constants
with which these solutibns must be multiplied, solutions for many cases
of loading and supporting the edge may be found. The full expression
for the bending moment Mcp and the values of the displacements u (in

x-direction) and w (radially outward) for the edge ¢ = O are given
here for three important cases: .

(1) Normal forces Ng = Fy sin %5, applied to a free (unsupported)

edge,

/

Fqa - - ' -k ‘
Mg = - z%—({é + 1)[% Kl¢(cos Ko + {5 sin n2¢> - e of cos Klé] sin %;
_ (17a)
with the displacements at the edge @ = O,

F ) : R
u = - 1° ({5+ 1)\[§§2-1-vx2] cps%’i

EtA3

c
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Fla

-l )2t - @R Y (v - 2] o

(2) Shearing forces N¢x = Fo cos -sz—, applied to a free edge,

ank

-y a1 e
2@3 2+ \[E% leos ko + ({54— 1) sin xggﬂ -

Mg = -

e"K2¢ [cos kP + (\{5 - 1) éin nl¢]} sin -’-%}5 (170)

with the displacements at the edge § = O,

u———-—-——-\]—é\,2+ 2cos—

w__m\jﬁlg.;. r(g +l-2x2>s:m—l-—

(3) Combined action of a shearing force N¢x = F3 cos fix— and a

transverse force Q¢ = -AF3 sin “Zx, applied to a free edge
F3al - '
Mg = - 2 \IAE + \ré{fe 1¢[(f2_+ l) cos Ko + (2 2+ 1) sin,n2¢] -
e"'{2¢ K\E + l) cos k1f - sin K1¢]} sin —’?— (17c)

with the displacements at the edge @ = O,

;iig \IE\’E + \I_E' cos —

F § '
_ 32 ‘!é" 2
= Et)ﬁ \I [\IE + l + 1 - EX:] sin 1(2}-
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Coming back to the original problem represented by figure 12, the
bending moment may be found by superposing the three solutions

(equations (17a) to (17c)) with appropriate values of the constants Fq,
Fp, and F3. These can be found from three boundary conditions at the
edge @ = O.

The first harmonic of the locad pa shown in figure 12 is
Da nX

N¢ = - —=— gin 3 In order to give N¢ this value, it is necessary
- b1 .
to set
hpa
Fqi = o —
1 7

and this is the first of three conditions. The other two follow from
the deformation which the door frame imposes on the shell. Since the
cross section of this frame is assumed to be large enough to neglect
axial deformations, u =0 at @ = O for the shell. Another assump-
tion formulated previously is that the door frame will not deflect
very much in the w-direction. Therefore, w =0 at ¢ = 0 for the
shell.

When u and w are expressed as sums of the contributions of Fy,
Fp, and F3, according to the formulas given before, and set equal to

zero, there are two linear equations from which Fp and F3 may be
found., The result is as follows:

,F2 =

7

e R (e A

1-2v2 + (1 + ev)x“]

N I K{z‘ s 1)k - (1 - w22 s 1+ 2v® - (14 2v)>»ﬂ

\‘K§5)u

The bending moment Mé due to the combined action of Fy, Fo,
and F3 can now be computed; going back through details of the theory
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which have not been reproduced here, the hoop force N¢ and the longi-
tudinal force Ny 1in the shell can also be found.

This has been done for an-illustrative example, where

A =6
.
1- Y -1k x 106
X
v = 0.3

The results are plotted in figure 13 over the circumference of a cross
section through the fuselage.

This dlagram shows the following features which are of practical
interest:

(1) The disturbance produced by the door o@enihg is restricted to
a rather small part of the shell. At an angular distance of 30° from
the edge it has practically vanished. :

(2) The disturbance in the hoop force is w1thout importance. It
is only slightly higher locally than in the undisturbed part of the shell.

(3) here are considerable stresses in the x-direction. The forces
Nx shown in the diagram are, of course, additional to forces which may

exist from other causes. In particular, there is a zone of tensile stress
near the edge. When taken together with a compressive force in the
adjacent bar of the door frame, these stresses are comparable with bending
stresses in a beam of span 1, which receives the load N¢ = pa from the

undisturbed shell and is supported on the two rings shown in figure 12.

(4) The forces Ny are arranged in alternating tension and compres-

sion zones of approximately equal width and decreasing intensity. The
width is such that in usual fuselages it may be of the same order as the
distance between stringers. If stringers were placed at the zeros of Ny,

they would not influence our problem., This justifies the procedure used,
which is based on the assumption of an isotropic shell without stiffeners.

(5) If an additional stringer were provided right at the peak of Ny,
the stress distribution would, of course, be changed considerably. The
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essential effect of this measure would be beneficial: The stringer would
share the axial load with the shell. Therefore, it may be suggested that

only the width of the first tension zone be determined, and a good stringer

be provided at its center, that is, at a distance of 900/xl from the
door frame.

Bulkheads

General formulas for shells of revolution.- A cylindrical pressure

cabin must be closed at its end by a bulkhead. This bulkhead may be
constructed as @ flat wall built up of vertical and horizontal beams and
a metal sheet, The beams have to transmit the air pressure by bending
stresses to the circumference of the bulkhead, from where it can be
transferred to the cylindrical cabin wall., Since the total air pressure
on the bulkhead is a force of considerable magnitude, a flat bulkhead
will result in a heavy construction, which should be avoided if possible.

The preferable shape of a bulkhead is that of a shell similar to a
boiler end. When the cabin has a circular cross section, such a bulk-
head will be a gshell of revolution. As a basis for its stress analysis
a short account of the theory of such shells will be given here.

Figure 14 shows the middle surface of a shell of revolution; its
intersections with planes normal to its axis are parallel circles, and
its intersections with planes céntaining the axis are all equal to each
other and are called meridians., At all points of a parallel circle the
angle ¢ between its plane and a tangent to the meridian has the same
value and is therefore characteristic for this circle. The angle between
the plane of a meridian and the vertical will be called 6. 8ince a
point of the shell is-determined by the parallel and the meridian on
which it lies, the angles ¢ and 6 may be used as coordinates on the
shell. :

’ If the shell is cut along a parallel circle (fig. 15), the stresses
transmitted there can be found. As is usual in shell theory, equations
are not written for the stress but for the meridional force N¢ which

acts on the unit length of the circle. This force has the direction of
the meridian. The resultant of all the meridional forces acting on one
parallel circle is horizontal and of the magnitude N¢(sin @)onr, and it

must be equal to the resultant R = nrgp of the air pressure. Hence

Ng o= D
g 2nr sin @

pr

et | (18a)
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When the shell is cut along a meridian, internal forces, that is,
the hoop forces Ng, are found, but they are not the same at all points

of the- merldlan and, therefore, cannot be found as simply as N¢ A

shell element limited by two adjacent meridians and two adjacent parallel
circles (fig. 16) has to be cut out. The sides of this element, which
are parts of meridians, have the length ry d¢, where r, 1is the radius

of curvature of the meridian. The other two sides have the length 1r dé
(slightly different from each other because r is not the same on both
parallel circles). The equilibrium of the forces N¢(r as), Ne(; &¢)

and the air pressure p(r d8)(r; 4d¢) in the dlrectlon of a normal to the
shell yields the equation

1

N¢(r a6)ag + Ny(ry q¢)de sin @ = p(r a8)(ry ag)

The factor sin § in the second term comes from the fact that the
resultant of the hoop forces lies in the plane of the parallel circle
and has to be projected on the normal to the shell. The equation may
be simplified to

N
¢ +—sin f =p
L T \

Introducing Ny from equation (18a) into this equation,

Ny = —2=- (1 - —-—-r———) (18b)

s1in ¢ 2ry sin ¢

Equations (18a) and (18b) are sufficient to find the internal forces Ng
and Ng when the shape of the shell is known. In order to permit the

best use of the space in the pressure cabin and in the fuselage at its
rear, an ideal bulkhead should be as flat as possible. This might lead

to a bulkhead designed to meet the cylindrical cabin wall at an angle,

as shown in figure 17(a). At the edge of the bulkhead equation (18a) will
yield a certain value of the force- N¢ which, of course, must have the

direction of a tangent to the meridian. Now this force cannot be trans-
mitted to the cylinder because this shell can only resist a force N,

having the direction of a generator, The difference, that is, the radial
component of N¢, must be transmitted to a stiffening ring. It leads
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there to a compressive force of considerable magnitude. The corresponding
deformation, a decrease of the ring diameter, fits in no way to that of
the cylinder and no better to that of the bulkhead. Therefore, all the
trouble with bending stresses described in the section entitled "Bending
of a Cylindrical Shell" arises here again but in a much more serious
magnitude. The meridian of the bulkhead should, therefore, always end
with a tangent parallel to the generators of the cylindrical cabin wall.

At the center of the bulkhead r =0 and $ = O, and formulas 18(a)
and.18(b) become indefinite. If the meridian has a finite radius of
curvature r; at this point, then, in its vicinity the relation

r =ry sin §
holds. Introducing it into equations (18), they yield

pr
Nj = Ng = —= (18¢)

The tendency to make the bulkhead as flat as possible might lead to
a meridian with an extremely feeble curvature in the central part. In
the extreme case, for the curvature l/rl = 0, the stresses become infinite.

This is illustrated by figure 18. The meridian in the upper helf is a

biquadratic parabola a3x = rh, and the diagrams of the forces N¢

and Ng show the consequences of insufficient curvature of the shell.
The lower half of the figure shows how easily the situation can be
improved. Here the central part of the shell is replaced by a spherical
segment, and at once the stresses are reduced to a moderate magnitude.

It may be mentioned that the meridian chosen for this example does
not fulfill the condition of a smooth transition to a cylinder, and,
therefore, cannot be recommended even in the improved form, but the

- essential effect shown in figure 18 is, of course, true for any other

shape with insufficient curvature.

Ellipsoidal bulkhead.- An oblate ellipsoid (fig. 19) used as a
bulkhead provides a good compromise between the desire to avoid dead
angles and dark corners and the necessity of providing a smooth flow
of forces. Relations between the radii r, =r;, and ¢ may be found

from the equation of the elliptic meridian. They are:
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r = a2 sin ¢

»(32 sin°g + b2 cosg¢)l/2

azbz

rl:z 2 2 __.24)3/2
(a sin“g + b~ cos ¢)

When these are introduced into equations (18a) and (18b),

N = pa? ‘
2 2(&2 sin?g + b° c052¢)1/2

Na = pa2 b - (a2 - b2) sin2¢ :
22 (32 sing + b2 c082¢)1/2 »

These formulas describe completely the stresses in the bulkhead. They
are not limited to & shell of constant thickness, hence the local

stresses may be found simply by dividing by the local thickness t of
the shell:

og = N¢/t

Og = Ne/t

The stresses at two points are of main interest:

The center = Q°
and the edge @ = 90°, :

In the center is found a biaxial tension

U¢=Ue

pa?
2bt

which determines the wall thickness. At the edge, the force N¢ trans-

mitted to the cylindrical fuselage is independent of b and is the same
for all ellipsoids (and for any other shape of bulkhead with smooth
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transition to the cylinder). The hoop force Ng depends largely on the
ratio a/b of the axes. If b = 0.707a it becomes zero, and if the
ellipsoid is still flatter the hoop force will be a compression. Since
it is desirable to build the bulkhead as flat as possible, this fact
deserves special attention, The compressive stress may be rather high,
but it is confined to a small zone. Figures 20(a) and 20(b) show two
examples of the stress distribution. In any case it will be wise to
provide for a stiffening ring at the connection between the bulkhead and
the fuselage. ’ ’

The compressive hoop stress has still another consequence which
needs consideration. It produces an elastic deformation, which decreases

- the dismeter of the boundary circle of the bulkhead. On the other hend,

the diameter of the cylindrical wall of the fuselage will increase in

_ the part in front of the bulkhead as a consequence of the positive hoop

stress in a cylindrical shell, and will not change at all in the part
behind the bulkhead where there is no internal pressure. The deforma-
tions of the three shells look somewhat as shown in figure 21. Since

the shells are connected to each other, such a discrepancy cannot exist
in reality but will be prevented by a system of bending stresses in the .
boundary zones of all three parts. In boilers and other pressure vessels
these bending stresses are rather serious and means to avoid them are
desirable. In pressure cabins they may be of some minor importance, but
it is certainly better to eliminate them as far as possible.

The discrepancy between the two cylindrical parts is, of course,
unavoidable, but the .edge deformation of the bulkhead should lie between
those of the two cylinders. That means, at least, that the hoop force
N¢ must be positive, A hemisphere would fulfill this condition per-

fectly, but as a bulkhead it would lead to poor utilization of space.

A better solution is to turn the ellipsoidal bulkhead with 1ts convex
side toward the pressure cabin (fig. 22(a)). Then the previous for-
mulas are still applicable, but the signs of all stresses are reversed.
That is desirable at the edge but certainly not in the center, where
compressive stresses create a buckling problem. This will be avoided
by the bulkhead shown in figure 22(b). The trouble with this shape is
that the membrane stresses at the sharp edge between the convex and
concave shells cannot make equilibrium with each other without the help
of a stiffening ring. This is shown by figure 23. The two meridional
forces N¢ shown there, one a tension and the other a compression, will

have the same horizontal component and thus assure the axial equilibrium
of the shell; but their radial components are both directed outward and,
therefore, cannot equilibrate each other. If a ring 1s provided, they
may both be transmitted to it as shown, leading to & compressible hoop
force in the ring. But here a new difficulty arises. The hoop strains
of the three parts will not fit together and will again lead to bending
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stresses. It may be that they will turn out to be less serious in s
particular case, but at least they are now at a place where they do not
produce quilting of the surface of the fuselage.~

Bulkheads with improved boundary effects.- A more promising method
to avoid excessive bending stresses would be to choose another shape of
the meridian. The fact that a hemisphere gives just what is wanted, an
edge deformation halfway between zero and that of the cylindrical cabln
wall, indicates that the meridian must begin with a curvature 1/a at
the edge. In order to make the bulkhead flat, the curvature should then
increase and later become very small when the center is approached.

This is schematically shown in figure 24, but the idea cannot be executed
in this form because any discontinuity in the curvature again will pro-
duce those local bending stresses that are to be eliminated.

What is needed is a curve having the same general shape but a smooth
transition of curvature. Such a curve may be found in several ways.

One is & modification of the Cassinian curves (see also reference 5).

Using the coordinates x and r in a meridional plane as shown in fig-
ure 24, the equation )

‘(nex2 + r2)2 - 2A2(n2x2 - r2) - B¥ (19)

describes a Cassinian curve, if n = 1. With n > 1 the curves are
flattened and for 2 < n < 3 assume a reasonable shape., The parameters
A and B must be chosen so that for x = O +the ordinate becomes r = a
and the radius of curvature is ry = a, This yields

2
A =12 P__..__l
n2 + 1

4] n2 -1
B = =& ..3__._..__
n2 + 1

The radius of curvature at the center of the bulkhead will then be

n3 \[3nF -1
2n2 -1 n2'+ 1
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With these data the internal forces at the most interesting points
can be found. At the edge equations (18a) and (18b) with r = r =a

and @ = 90° give:

_ e
N¢ =5
- P8
Ng = Y

At the center equation (18c) must be used and

n

is obtained.

But this is not encugh. To be safe from surprises, one must have
the stress distribution along the meridian. It can be found by the
following procedure.

t

Assume x and from equation (19) find r, or vice versa, depending
~on vwhich will give the grester accuracy. Then compute

" d2r
" =

. (r1)2 _ n2x  422(n2x + rr')
X r. T (n2x2 + T2 4 A2)2

Az
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r rr"

ry sin g 1+ (r'jz

Now formulas (18a) and (18b) may be applied.

This was done for n = 2 and the results shown in figure 25 were
obtained. The hoop force Ny falls to zero and rises at the center of

the bulkhead toward the value previously mentioned. If n > 2 is
chosen, the hoop force will become negative, and very much so if n 1is
too great. This, of course, should be avoided.

Bulkhead for double cylinders.~ In a double-~cylinder cabin the two
cylinders may have their bulkheads at different stations. Between the
two bulkheads the longer cylinder must have a full circular cross sec-
tion, and its intersection with the first bulkhead leads to a difficult
stress problem.

This situation 1s eased considerably if 1t is possible to have both
bulkheads at the same cross section. Their shapes may then be chosen
such that they intersect in a plane horizontal curve. This will be the
case when they are oblate ellipsoids with the ratio b:a = b':a'. They -
may then be derived by affine transformation from two spheres as indi-
cated by figure 26.

A reinforcing ring must be provided along the intersection of the
two shells. It will now be shown that this ring, which has the shape
of a half-ellipse, will be stressed in its own plane only, and, with a
certain exception, will even be free from bending stresses.

In the case of two spheres this is evident. Introduce coordinates
@, @', and 6 as shown in figure 26. If the two shells are inflated
by a pressure p, the internal forces will be

1]
OVE N

N¢ = Ne pa
in the upper shell and

1

pa

=
AN
n
=
D
]
PO

in the lower. The forces Ny for ¢ =180° - o and N¢' for
@' = 180° - o' act on the ring as shown in figure 27. Since
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a2 sina = a' sin o'
= C

the vertical components N¢ sin a and N¢' sin a' balance each other

and the horizontal components combine to a uniform radial load; pro-
ducing a positive hoop force

F=c % pla cos a + a' cos a')

in the ring.

When there are two ellipsoids, the stress analysis is not so simple.
One might think of using the solution given under the section entitled
"Ellipsoidal Bulkhead" for a single ellipsoid and of determining from it
the forces acting on the elliptic ring. But there is no reason to believe
that the axial symmetry assumed in deriving that solution still exists
when part of the shell has been cut away and its symmetry thus destroyed.
The clue to the solution is the ldea that the ring shall be free of
bending moments, and it has only to be shown that a solution with this
property exists, that it is unique, and how to find it.

To fulfill this program, some notions of the theory of affine shells
~are needed (for details see references 2, 3, and 5). They will be pre-
sented here as applied to the particular problem to be solved.

In addition to the curvilinear coordinates @,6 and @',6 on the
two spheres, two systems of rectangular coordinates are now introduced: x,
y, and z for the ellipsoids and x¥, y¥, and Z¥ for the spheres. The
simple geometrical relation between the two shells is represented by

x = nx*
- ¥*

y=Y

z = z¥

with n = b/a. As curvilinear coordinates on the ellipsoids the
values of @ (or ¢*') and 6 for the corresponding points on the
spheres are used. These coordinates do not represent angles that can .
be measured on the ellipsoids, but each pair of values ¢,6 defines
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clearly one point on the shell, and this is all that coordlnates are
expected to do, -

A shell element is cut out of the upper sphere by two meridians 6
and 6 + d6 and by two parallels @ and @ + df. It has the area

dA* = a2 sin ¢ af a6

When it is projected on the planes (y*,z ), (z*,x*), and (x*,y*), the
projected areas are found:

dA* sin @ cos 6

=

&
*
1]

ar* sin @ sin 6

dAZ* = dA* cos ¢

The element of the bulkhead shell is simply the projection of the
element dA* on the ellipsoid. Both have the same projection on the
yz-plane, but the other two projections are reduced in the ratio n:l:

dAy = dAx*
= dA* sin @ cos 6
_ *

dAy =n dAy
= g dA* sin ¢ sin 6
dA, = n dAz*

b ga*
" da* cos @

When the ellipsoid is inflated by an internal pressure p, the force
acting on the element is p dA and has the rectangular components p dAy,
p dA v’ and p dAy pearallel to the axes x, y, and z. This load pro-
duces internal forces transmitted at the four sides of the shell
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element dA. On each side of the element this force lies in a tangential
plane to the shell and may be resolved into a normal and a shear com-
ponent. Something better can be done: Oblique components parallel to
the coordinate lines @ = Constant and 6 = Constant can be used.

These forces divided by the length ds¢ or dsyg of the line element

are called Ng, Ng, and Ngg, as indicated in figure 28.

A simple relation between these forces and a certain system of
internal forces N¢*, Ne*, and N¢9* in the sphere will now be

established., These forces must, of course, lie on tangents to the
sphere, and they will be chosen in such a way that they have the same
projections on the yz-plane as the corresponding forces in the ellipsoid.
Then both will have the same components in the directions y and z,
but the x-components of the forces N in the ellipsoid will equal n
times the x-components of the forces N* in the sphere.

The forces N¥* of the sphere will be in equilibrium with a load
which has the same y- and z-components as that applied to the ellipsoid,
but l/n times its x-component.

If the load components per unit area dA* of the sphere are denoted
by Px*, Py, end p.¥,

1
py* dA¥ = 5P iy

P % dA* sin @ cos €

py* aA* = p dAy

It

P % dA* sin @ sin 6

Pz* aa* D dAz

P % dA* cos ¢
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and hence the loads per unit area of the surface of the sphere are

N P =D %-sin @ cos 6 7
* b -
Py* =P ¢ sin @ sin 6 v > (20)
p,* =p2cos ¢ I

L

If the forces set up in the ‘spherical shell by this load can be found,

it is only necessary to project them on the tangential plane of the
ellipsoid and to refer to the unit length of the ellipsoid's line element
and then the forces in the ellipsoidal bulkhesd will be obtained.

To make the stress analysis for the sphere along conventional lines,
the loads given by equation (20) are transformed into the components
X*, Y*, and Z* as shown in figure 28:

X* = -p,* sin 6 + py* cos 6

5 .
= - " &in @ sin 26

T* = (px* cos 6 + py* sin 6) cos § - p,* sin ¢

2. p2
= Eﬁfi};ﬁ;—l-cos ¢ sin @(1 + cos 26)

z* = (Px* cos 6 + py* sin 6) sin § + p,* cos @

E‘z—b[?bz + (32 - bz) sin2¢(l + cos 29)]
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These expressions have the form

X* = X,* + X,* sin 26
T = Y ¥+ Y,* cos 26
z* = 2,* + 2,* cos 26

showing the harmonic constituents of orders O and 2,

The first term on the right 1s a load with rotational symmetry:

%;* =0

2 2
* _ P(a - b ) .
It = v cos @ sin ¢

x _ _gg[j 2. (a2 _ v2) ayn2 ]
Z,* = s=|ov? + (a2 - b ) sin?g

Simple formulas, which will not be reproduced here, lead to the internal
forces:

N¢* - N¢O* 7
=20
2
Ng* = Ngo - (21)
= %Ebe + (a2 = bz)sin2¢]
i N¢9* =0 |
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These formulas are valid for thé upper sphere of radius a., For the
lower sphere it is necessary to write simply a', b', and ¢', instead
of a, b, and ¢, respectively,

The second harmonic of the load,
p(s2 - v2)

Xo¥ = - 2 T 77 gin
2 2ab 2

Y, = — % cos § sin ¢

N p(a2 _ bQ)

Zyr" = sin2¢
2 2ab

may not be handled so easily. It leads to forces which depend also on
a sine or cosine of 26 and may be written as

N¢* = N¢2* cos 26
Ny = Néz* cos 26
Ngg* = Nggp™ sin 26

The basic formulas connecting N¢2*, N62*’ and N¢62* with the load

components X»*, Y *, and * may be found in the literature (refer-
2 2

ence 2, pp. 37 to 4k, or reference 3). They lead to a solution having
two free constants for each of the spheres., One constant in each pair
may be determined from the condition that the stresses are finite at
=0 and @' = 0. The other two are still to be determined. In this
way are obtained
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o - p(a? - v2) X c
2 - ‘
2b 2(1 + cos §)°
Nggo® = - 2 22 - v?) cos ¢ ¢
o2 ~ - -
2 2b 2(1 + cos ¢)2
2 2
Ngp* = - B2 ) cos?p - < 5
2b 2(1 + cos @)

for the upper shell and corresponding formulas for the lower, containing
another constant C'.

From these forces the ring receives a radial load
(N¢2* cos a.+-N¢2*' cos a? cos 26, a vertical load
(N¢2* sin a ~ N¢2*' sin a') cos 26, and & shear load (N¢92* + N¢92*”> sin 26,
positive as shown in figure 29. The two free constants give the opportunity
of influencing these forces in such a way that the ring is free of bending.

The first thing to do is to make the vertical load vanish at every point.
This yields the equation

N¢2* sina - N¢2*' sina® =0

When the expression just given for N, 2* is introduced and scme simple

geometric relations mentioned before are used, the following equation
is obtained:

. . .
sin a o sin a -0 (22a)

C o2 .
(1 - cos a)? (1 - cos a')e

The second equation in C and C' must express the fact that there
is no bending in the plane of the ring. Under this condition the ring
has only an axial force F, which, of course, will be a function of 6.
From the equilibrium of the ring element (fig. 30) two relations are
found:

c(N¢2* cos a + N¢2*' cos @') cos 26 = F

C(N¢92* + N¢92*') sin 26 = %
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From the first one it is possible to write F = Fp cos 26, and, elimi-
nating F, from both equations, / )

Ngp* cos a + N¢2*' cos a' + %(N¢92* + N¢92*') =0

When the expreésions found for the internmal forces of both shells are
again introduced and then simplified by appropriate use of geometric
relations, this will yield the second equation for C and C':

c (1 - 2 cos a) . o (1 -2cosa') _ 3p(e® - v2) sin (o + a')

) > ™ n - (22b)‘
(1 - cos a) (1 - cos a') sin a

These two equations, when solved in general terms, yield

_ 3p(a2 - b2) (1 - cos @)? sin (a + a')

b sin o + sin a' - 2 sin (a + a')

C

Introducing this into the formulas for the internal forces, the following
expressions for the upper sphere are found: ‘

* p(aE - b2) 3 sin (a + a') (1 - cos a)?
N¢2 = el 2] 4+
2b sina + sina' - 2 sin (a + a') | (1 + cos §)°

% _ p(a2 - b2) 3 sin (a + a') (1 - cos m)g
N¢92 - 2b {ios P+ Lin a + sin o' - 2 sin (a + a') (1 + cos ¢)2 r (23)

* p(a2 - be) o 3 sin (a + a') (1 - cos a)?
Ngo* = - ————= Jcos“@ +
2b sin @ + sin a' - 2 sin (o + a')|(1 + cos §)°

These and those in equations (21) are the forces set up in the
spherical shell by the fictitious load (20). The last step necessary
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is to find from these forces the real forces in the ellipsoidal bulk-
head under the uniform air pressure p.

The center of the bulkhead has the coordinates @ = 90°, 6 = Q°,
The internal forces are here parallel to the yz-plane and, therefore,
are the same in the sphere and the ellipsoid:

= Ny % * o)
N¢ = N¢O + N¢2 cos O
_m . p(ae - b2) L. B sin (a + a'n(l - cos a)?
2 2b sin a + sin a' - 2 sin (a + at)

pa? 3p(a2 - b2) Ein (o + a'ﬂ(l - cos a)?
+

2b 2b sin a + sin a' - 2 sin (a + a')

Neo* eree* cos 0°

b=
D
]

pal "3p(32 - b2) Ein (a0 + a'ﬂ(l - cos a)?

2b 2b sin @ + sin a' = 2 sin (a + a!)

i

N¢e N¢ao* + N¢92* Sih 0%

4
On the edge 6 = \1:900. ‘Here the force Ny Has x-direction and
must be reduced by multiplying by n = b/a, The force N¢ is parallel
- to the yz-plane; therefore, the forces on corresponding line elements
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of sphere and ellipsoid are the same but the line element is reduced
in the ratio b/a, hence the force per unit length of this element
increased by a factor a/b. The shear is zero. Thus on the edge of
the ellipsoid:

8, * * (e}
_;(N¢O + N¢2 cos 180 )

g

_pa Pa(ag- be) 1+ 3 sin (a+at) (1 «cos a)?
2 , 2b2 sin a+sin a'= 2 sin (a+a') (1+cos ¢)2
~ p(2b2— ag)a ) 3pa(a2-b2) sin (a+a') (1-cos CL)2
ope 2p2 sin a+sin a' -2 sin (a+ cp') (1+ cos ¢)2
b ) * o
Ne = E(Neo* + N92 cos 180 )
2 2 2
2 p(a2 - v2)| Dy L
=5+ = §1n¢+cos?+
2
3 sin (a + a') (1 - cos a)

sin @ + sin o' = 2 sin (@ + a') (1 4 cos ¢)2

pa 3]&3(a2 - be) sin (o + a') (1 - cos a)?

P 28 sin @ + sin a' - 2 sin (o + a') (1 + cos ¢)2

An example for the distribution of these forces over the circumfer-
ence is shown in figure 31. In the top and bottom zones the forces are
" rather uniformly distributed, but there are marked peaks at the junction
of the two ellipsoids. This fact indicetes that stresses in shells
should be determined carefully.
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In all the preceding formulas, the denominator
sin @ + sin a' - 2 sin (a + a')

appears. It may happen that o« and o' have such values that this
denominator is zero, in which case the formulas would yield infinite
stresses. This indicates that in such a case the combination of the
two spherical or ellipsoidal shells is capable of an inextensional
deformation and that rigidity can only be secured by giving the neck
ring sufficient rigidity against bending in its own plane. If plane
bending of the ring is to be assured, then equation (22a) between the
two constants C and C' still must hold. The bending moment in the
ring then becomes independent of the choice of C. Equation (22b)
becomes useless and must be replaced by the condition that the internal
forces assume finite values. This leads to C =C' =0,

The somewhat lengthy analysis of the double bulkhead has been
reproduced here not only because of the particular problem under con-
sideration but as an example of two important features of thin shells:

(1) The fact that the stiffening ring along the intersection of
two parts of the shell is usually free of bending moments

(2) Thevuse of affine relations for the solution of shell problems

Nose of Plane

General rules.- The nose of the fuselage msy have so many various

‘shapes that not much can be said in general about its stress analysis.

In high-speed planes aerodynamic consideration may lead to shaping the

 nose as a perfect surface of revolution. If it is part of the pres-

surized cabin, it may be treated with formulas (18a) and (18b) for
stresses in such shells; if the cabin terminates in a bulkhead back of
the nose, all that has been said about the rear bulkhead is applicable.

The modern passenger plane usually has a nose which looks like that
shown in figure 32. The major part of it is a shell, but the smooth
surface is interrupted by many windows. In such cases a shell analysis
as described in the preceding sections will, in general, be too com-
plicated for practical purposes. As regards the stress analysis of such
structures, the following facts should be kept in mind:

(1) All lerge uninterrupted parts of the metal skin will act as

shells, whether they are fixed on a solid framework or only stiffened
by rings and stringers. The stiffeners which are connected to the shell,

&
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although absolutely necessary for the introduction of local loads and
as a buckling reinforcement, are obstructions to a smooth flow of stress
in the shell proper and lead to qulltlng and to ten51le stresses in
rivets. :

(2) A1l edges of such shell parts, for example, along the windows,
must be stiffened by edge members. It is always advantageous to shape.
these edge members after plane curves. With rare exceptions they will
not then be subjected to bending in space, but they must offer resistance
to bending in their plane and require the correspondlng r1g1d1ty5 bra01ng,
and support.

(3) There is no need for making cross sections c1rcular. Any curved
shell can resist an internal pressure, ‘but, of course, the stress dis-
tribution will be less uniform and may e€asily have local zones of ‘com-
pression if the cross sections are far from circular.

(4) Areas of extremely low curvature should be avoided, Membrane
‘'shell theory leads to extremely high stresses in such parts and, owing
to these stresses, the panel bulges out, thus increasing the curvature
and reducing the stress. In addition this bulging invariably leads to
some plastlc;deformatlon at the edges of the panel and, therefore, to
a permanent bulglng, -which is undesxrable. :

' Ellipsoid With”three different axes.- A general ellipsoid is aikind
of a shell which probably will not occur as part of a pressure cabin.-
However, its membrane forces are easily computed and may give an idea
of what may happen in other shells of noncircular cross section. )

Consider an ellipsoid having the three half-axes a > b > ¢ and :
being subjected to an internal pressure p. In order to find the T
membrane forces, establish relations between them and those in a sphere
of radius b wunder a certain load. This follows the same lines as the
theory for the. double bulkhead in the section entitled "Bulkhead for
~ Double Cylinders." -

_ Inirectangular coordinates x*, y¥*, and =z¥ the sphere has the
equation -

Cx*2 4 y*2 4 g*2 o p2

and in coordinates x, Yy, and 2z the equation of the ellipsoid is
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As surfaée coordinates on the sphere the angles ¢ and 6 are used
as shown in figure 33. Through the relations

= 8
X B X
o Ly =y
. =S -
zZ P pA

each point of the sphere corresponds to a point on the ellipsoid. By
attributing the same values of ¢ and 6 %o both, a system of coordi-
nates is established on the ellipsoid., Its lines @ = Constant are
parallel ellipses in horizontal planes. Its lines 6 = Constant are
ellipses in planes through the z-axis.

The shell eiemenf on-the sphere has the ares

dA* = a dffa sin @ a¢

and its projections on the coordinate planes are

dA* sin @ cos 6

F
*
1

dA* sin @ sin @

dA,* = aa* cos @

*

The projéctions of the corfespondidg element of the ellipsoid are -

C o, %

, Ay = 5 dhx
: = BC gp *

.dAy_ e dAY
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Multiplying this by p yields the components of the force p dA acting
on that element. The corresponding forces on the spherical element are
then R ' )

b
py* dA¥ = =P dhy
) c ¥ s
=g P g dA¥ sin @ cos 6
* qA¥ »
Py” dAT = p dAy .
= p %? dA* sin @ sin 6
; x _ Db
Pz*dA ""C‘pd-Az
N = % P % dr* cos 1)

From these relations are found px*, py*, and pz*, the loads per unit

area of the sphere, in directions x¥*, y*, and =z*. They are connected
with the usual components, X* in direction 6, Y* in direction ¢,
and Z*¥ in the radial direction by the formulas:

S X* = -px* sin 6 + py* cos 6

Y* = (px* cos 6 + p,* sin 9) cos § - p,* sin ¢

* cos ¢

z* = (px* cos @ +>py* sin 6) sin ¢ + P,
Introducing p,%, py*, and ﬁz*, they yield:

X*-—-BE(E-E) sin ¢ sin 20

E_X2 sin 26
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* _ P : £,8 _o,8)y_¢cfa_Db
YT = 5 cos ¢ sin ¢[Ka + o2 2 c) b(b ) cos 2%}
2 Y, + Yo cos 26
7% = %[% % + (% + %% -2 %) sing - %(% - E) sin2¢ cos 2%]
2 Zy + Zevcos 26

The corresponding membrane forces may be found from well-known formulas
(reference 2, pp. 37 to 39). They are:

N¢* -bs&b 23(2‘— E) cos 26
a

x_plad, (bc ac &b\, of] pcfa D) 2
Ng* = 2{: + ( + -2 c) sin®g| + T - ) cos $ cos 26

Ngo™ = -135-(9- - 2) cos § sin 26

To find the forces in the ellipsoid, the ratio of the corresponding line
elements is needed. The results are mentioned only for the three points
A, B, and C. '

At the point A § = 90°, 6 = 0°, and

) =% -5

|
oS
/_H\
U‘Io
[\ BE\V]
+
- e
o
o g
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.2c\a b c
‘. )
_pp2, . 2f
T 2\a o2

2 w2
=%§(1'Eé+ba)
c a

At the point B § = 90°, 6 = 90°, and

=
AN
)
o['S
T~
+
d‘o
] o
]
Rol %o
~

2 2 .
_mf 2 a2 ~
Ne = ) (l + b2 c2>

At the point C @ = 0° and 6 may have any value. When 6 =0° is
assumed arbitrarily, then N¢ lies in the xz-plane, and Ng, in the

yvz-plane, and the internal forces are:

2
pc a a
NA = =—[]1 - —= 4 —
g 2( o2 cz)
N __pc( b2 bz)
6=\ -2z
a c

'
~

If (a2 + be)c2 < a2b2, the force Ng at the points A and B becomes
a compression, The other four formulas always yileld positive forces
when a 2 b 2 c. These results may serve as a first orientation of what

is to be expected in shells of noncircular cross section under the
action of an internal pressure. :
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PIATE PRCBIEMS

Stresses in Thin Flat Sheets

Plane plates are not very desirable as parts of the wall of a pres-
sure vessel, but it often is not possible to avoid them, Therefore, the
stresses set up in them by a lateral pressure p will be considered
here,

If such a plate were thick enough, it might carry its load by
bending stresses as does the reinforced concrete floor slab of a
building; however, the skin of an airplane is much too thin to carry
an appreciable load with tolerable bending stresses, Its stress system
is a superposition of bending stresses and of the stresses in a flexible
skin. ' ‘

The subject of this section will be such a thin skin of rectangular
shape. Its stress problem is essentially nonlinear. In two dimensions
it is so involved that all theoretical and experimental effort spent
on it up to the present is still far from giving a complete answer to
all questions which the engineer might ask. Therefore, a discussion is
first presented for the one-dimensional problem which, in many cases,
will give useful information for practical purposes and beyond that will
show the general features of the stress system present in the two-
dimensional case,

Thin sheet stressed in one dimension.- Consider a thin plate as

shown in figure 34%. In the x-direction it has the span 1, and the
sides x = tZ/2 are supported in such a way that not only the deflec-
tion w but also a displacement u in the xX-direction is prohibited.
In the direction of the y-axis the plate is supposed to be long enough
to make the conditions at the shorter sides immaterial.

For the purpose of stress analysis cut a strip of unit width out
of this plate. Because of the end conditions, the lateral load p will
produce a direct stress o along the strip, which is necessarily
independent of x. If the deflection w 1is large enough, this stress
will be capable of carrying the load.

This can be seen'on an element of length dx cut from the stfip'
(fig. 35). The condition of vertical equilibrium is:

Acﬁddw) pdx =0
— + =
(dx PoE
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Tt yields the relation

which indicates that the strip must deflect into a common parabola:

with & maximum at x = O

| 2
f=§f;E (24)

The horizontal displacement in the direction of increasing x may
be called u. The strain in the strip is then

m
L]

du, ;(@)2
dx 2\dx

Hla

At the center x =0, u =0 from symmetry. At the suyport
x = 1/2, therefore, ,

3

u=u0
_ o 1fz/2 (dw)‘2 ax
"= "3/, \&
0
2,3
=%_PZ (25)
480°t2

Since an unyielding support u, = O was assumed, this equation may be
used to find o for a given load:

3 Ep222

3t2

1
°=3
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From equation (24) the final expression for the deflection may be found,
in particular that for the maximum w=f at x = O

These two formulas represent nonlinear relations, owing to the guadratic
term which represents the influence of the deflection w on the strain
If this term should be neglected, as it is in many other cases, no
reasonable result at all would be reached, The nonlinearity is, there-
fore, an essential feature of this problem,

Since the plate deflects, there will be a bending moment

_ 42 3| 382pt2
. 6 12

This is incompatible with the assumed support and has beén neglected in
the preceding formulas, but this may safely be done if M 1is small as
compared with the moment p12/8 which would be necessary to carry the

load by beam action. This condition may be brought into the dimension-
less form:

Eth 3

o 16

For a pressure cabin with p = 7 psi and duralumin with E = JO7 psi
this yields .

|t

1
<< =
1 50

For the airplane, the assumption of unyielding supports goes too
far. The edges x = Constant of the plate are kept apart by stiffeners
in the x-direction. When they are not riveted to the skin, the problem
is still one-dimensional and may be represented by a flexible strip and

€.
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a strut as shown in figure 36. The flexible strip is exposed to the i

load p and deflects under it; its ends are kept apart by a strut of
cross section Aj, vwhich has a compressive force N = -ot; the supports

are such that they allow the correspondlng elastic deformation of the
bar.

When the cross section of one stiffener is A, and the distance
between stiffeners is d, then the area A; = A/d corresponds to a

strip of unit width of the plate,

f

When the horizontal displacement u 1is assumed to be zero at x‘= 0
(midspan), equation (25) may agein be used for the displacement u, at

the end, but now u, must correspond to the fact that the strut becomes
shorter by N1/EAp:

Introducing this into equation (25),

\I 32 \IAl +t ’ \ (26e)

for the stress in the plate. The greatest deflection follows then from
equation (24): :

]

1 3 3pl 3/f: t
£ =1 {2 \/1+A1 ~ (26v)

Comparing these two formulas with those which were obtained for
nonyielding supports, it is seen that they become identical for Al —) 00,

Since t/Al is more llkely to be equal to 1 than O, the assumption of
nonyielding supports may lead to errors of about 25 percent, overrating
the stress and underrating the deflection. It seems, therefore, not
worth while to spend much effort on the two-dimensional problem if this
effect is not taken into account. However, the simpler formulas are
good enough for estimating the order of magnitude of ¢ and f and
for discussing the influence of the bending stiffness of the plate.

The formulas (26a) and (26b) are sufficient if the sheet panel is -
part of a flat bulkhead. But in most other cases the wall, consisting
of" the sheet and its stiffeners, has to transmit an internal force such
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as Ny or N¢ explained in the section entitled "Circular Cylinder."

These forces may be due to the over-all bending of the fuselage, to the
action of the internal pressure on other parts of its wall, and to other
causes. When the sheet is flat and bulges out, the distribution of this
force on sheet and stiffeners is no longer governed by the formulas (5).
It may be found by adding an axial force P to the strip and strut '
system of figure 36 (see fig. 37).

If o again indicates the stress in the sheet, the force in the
strut is '

and the horizontal displacement at x = 1/2 must be

Equating this to the expression (25),

3(1 E_)_GEE-E____I’%?:O 2
U TI Ay ou2 (27)

This may easily be solved in any given case., The deflection f follows
then from equation (24).

Some results are shown in figure 38 in dimensionless variables. The
values for the parameter pZ/Et have been chosen as rather extreme in
" order to cover the whole field of practical interest. For most of the
diagrams, t/Al = 1 has been assumed, but one of them shows the trend

for a variation of this parameter. K

The diagrams show the influence of the force P. They emphasize
that a solution of the two-dimensional problem which disregards this
influence cannot yield more than a rough approximation of the real air-
plane problem, even if it were an exact solution of the simplified
problem.

Thin sheet stressed in two dimensions,- Assuming a sufficiently

thin plate, the formulas developed in the preceding section are exact
for infinitely long rectangles. - It is probable that they will yield
good results if the ratio of the sides is 1:4 or even 1:3, but when
the rectangle approaches a square, they become inapplicable.
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To find out how the results must be modified in such cases, consider
a square plate framed by four equal stiffeners (fig. 39). When the plate
bulges out under a lateral load p, stresses o will be set up in two
directions, which are denoted o0y and Oy The stiffeners will receive

compressive forces. The plate in their immediate vicinity must have the
same strain and hence a compressive stress. The distribution of Oy

along one of the edges must, therefore, be as shown on the figure.

At the center of the plate oy = Oy

along the coordinate axes, each one will carry one-half of the load p,
and the curvature will be half of that which would follow with this
same o Ifrom the one-dimensional theory. When the horizontal strip is
followed toward the right edge of the plate, the stress Oy will

decrease and finally become negative. Where it passes zero, the one-
dimensional theory will yield the correct curvature, and closer to the
edge the curvature of the square plate will be greater than that of a
single strip. A single strip was seen to deflect as a parabola. The
profile of the square plate must, therefore, be far from a sine curve,
and results computed on this assumption must, therefore, be interpreted
with some reserve,

When two strips are cut out

When a diagonal of the plate is followed oy always equals Oy s

but both stresses decrease the father away they are from the center.

The curvature in both directions must, therefore, become greater, and
a sharp fold may be expected toward the corner. But at least there is
a region where oy and Oy become negative and are no longer capable

of carrying any load at all. BHere even the thinnest plate must have
essential bending stress. The thinner the plate is, the smaller this
region will be, and the sharper the curvature will become. It follows
that the highest stresses will occur on or near the cormers. They may or
may not be responsible for the ultimate load of the plate, depending on
the possibility of smoothening the peak by local plastic flow, but they
are certainly responsible for permanent deformations which produce that
quilting of flat panels which makes airplanes un51ghtly and is not much
appreciated by the aerodynamicist.

There is little numerical information available on square and rec-
tangular plates. Some papers (references 6 and 10) are mentioned in the
references of this report. One of them, reference 6, contains rather
complete material for plates with unyielding supports (fig. 34); however,
this paper is based on the assumption that the profiles of the deflected
plate along both axes are sine curves. In particular, this assumption
is also made for the lengthwise profile of long plates (1:4), where it
leads to an overrating of the influence of the support at the short
sides. The results for the long plate, therefore, do not check with
the one-dimensional theory. However, the two-dimensional problem is




NACA TN 2612 53

so complex that a critical use of the diagrams of Moness (reference 6)
is the best that can be recommended at this time.

Thermal Stresses in Window Panes

‘The window panes of a pressure cabin are not only exposed to the
difference in pressure between the interior of the cabin and the free
atmosphere but also to a considerable difference in temperature. The
bending stresses due to the pressure may easily be found from text-
book formulas, but the thermal stresses require some discussion,

Consider a plate of uniform thickness, simply supported along its
edge.  Assume that no load is applied but that there is a difference T
between the temperatures of its faces. When the temperature is increased
by T, a positive strain

€ = al

will occur in every direction, « being the coefficient of thermal
expansion, When only one side of the plate is heated, ¢ is the dif-
ference in strain between both sides, and this difference leads to a
curvature

in every direction. The midéle surface of the plate is then deformed
into a small part of a sphere of radius 1/k.

If the plate is circular, this is all that happens. The window
will slightly deflect to the warmer side, and no thermal stresses will
be set up., But if the plate is rectangular, the deformed shape will
no longer fit on the support, and, in order to maske it fit, the support
will exert forces on the plate and these forces will produce bending
stresses., -

" Formulas for the bending moments which correspond to these stresses
will now be established and discussed. In doing so, the following nota-
ttons will be used (fig. 40): :

X,Y . coordinates "
W deflection
Mx’My bending moments

Mxy twisting moment
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Ky ' curvature in x-direction (éfg) ’
‘ X
. 1
. . Et3
K bending stiffness [-—~——————m
121 - vd

The stresses and deformation due to heating of the upper face of
the plate will be built up in three steps. The first one has already
been done, namely, the application of the temperature difference to the
free plate, resulting in a uniform bending without stress.,

In the second step this deformation is completely removed by applying,
along all four edges of the plate, constant external bending moments M,

of appropriate size, They produce bending moments

o

in the plate which are constant everywhere and in all directions. Now,

the curvature &k, of the plate is related to the bending moment by the

well-known formula:

o
Ko = = MX—V)
)
In this case, it yields
6 = - —o
X
K(1 + v)

To remove the thermal deformation, ky must be made equal to —am/t

H

and therefore

or .
t

My = K(1 + v)

Under the combined action ot the temperature T and the edge
moments M, the plate is perfectly plane and may be attached to its

supports. Now the third step may be done: The condition of simply
supported edges must be realized and the edge load M, compensated by
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adding an edge load -M,. This is a problem of plate theory and may be
solved in the following way:

When there is no lateral load, the deflection w of the plate must
satisfy the Vell-known differential equation (reference 11):

by Sty _ 3ty
D —— + —— =0

axk dx2dy Byh

Introducing the sum of the two bending moments

M=Mg + My

as an auxiliary variable, this equation may be split into twc equations of
the second order:

B e, 2% .0 (28a)

(28b)

These equations can be solved one after the other because a boundary
condition can be found for each one.

~ Consider, for example, the edge x = a/2 of the rectangle. The
bending moment -M, 1is applied there and

M = -,

is obtained. Since the edge is supported, w = O for all values of ¥y
and, hence, also
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Introducing this into the elastic 1&@

(aaw azw), )

MX=—K§;§+V$2.
4 (29)
(P é%z)
My = K(_By2 tY dx?2 p

il

it can be concluded that My -VM, on this edge and, hence, that

M= -1+ VM | (30)

A similar reasoning may be made for the three other edges.

The solution of equation (28a) with the boundarj condition (30) is
extremely simple. It is a constant, M = -(1 + v)M,.

Now equation (28b) may be attacked. Introducing the result just
obtained,

v | 3% _ Mo

e e T ———

2 dy2 K

and the boundary condition is, of course, w = 0,

This differential equation with this boundary condition is known
in the theory of torsion of a bar having rectangular cross section. All
that i1s necessary is to translate the solution known there into the
terminology of the plate problem,

The solution is:

n-1 nax nxy

w2 o e (-1) (31)
K 8 2 . 3 nra
1’3’5’ .e n osh Eg—
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One may easily verify that this expression satisfies the differential
equation and that w =0 for y = ib/2. At the other two edges,
x = ta/2, equation (31) yields:

. n~1
Mo b2 ye Lkl - 1 nny
k" T (-1) % —5cos 5=
™ 1,3,5,... o

The sum iﬁ the parentheses happens to be the Fourier series representa-
tion of the function

2 (2

wa\8 2

valid in the interval —b/2 Sy < b/2, and, therefore, the expression
in parentheses vanishes at every point of the two edges x = Constant
of the plate. This proves that the solution really satisfies the
condition w =0 on all four sides of the rectangle.

The bending moments can now be found easily by 1ntroduc1ng the
solutlon (31) into the elastic law (29):

A n-1 nnx nny
. 4(1 _ v) o = cosh < cos -+
My = Mol ———= K (1)
n ' n cosh 2Z&
. 1,35... 2b
o o o n-1 onx any
: h(l - ) B cosh 5 cos 5
My = -M5l1 - —— (-1)
. b1¢ nra
S 1535040 n cosh #=— 55—

These are the bending moments produced in step three. To obtain the
bending moments for the original problem, ‘the moment Mo, of the second
step must be added; the first step makes no contribution to the stresses.,
When M, 1is expressed by the temperature difference T, writing
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My = K(1 + v)S$
~ Eat®r
12(1 - v)
finally
: 1 ﬂ © Bl cosh 3%5 cos E%Z
My = = Eat?T|T - E (-1) 2
3n L g : sp D18
]_’3,°_’ n cos -é?-
1 = -1 cosh E%E‘cos E%Z
My = = Eat?T E (-1) 2
, 3n 1,3,... n cosh g%g

N

The solution would not be complete without having the twisting moment Méy.

Step two does not make a contribution to it, but it can be obtained from
equation (31) alone, using the formula -

3%

Mpy = ~K(1 - v)

ox oy
There is obtained
1 ) --nél sinh ~= sin 2L
Myy = = Eat2T E (-1) }
T 1,354 n cosh =&

The formulas for the moments are the solution of the problem as it
was formulated at the beginning. It is now necessary to discuss this
result and to draw some practical conclusions from it.
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At the edges y = +b/2

n
cos —EZ =0
b
for all odd integers n and hence
1
= ——-EameT
=1

My = 0

59

That the moment My vanishes corresponds to the assumed simple support;/
That My does not do so. is .ue to the fact that the edge is kept straight

in spite of the applied temperature difference.

At the edges .x = ta/2 there is the corresponding result

M, =0

M, = L EatlT
12
but to obtain it the Fourier series
’ < %) n-1

l,3,oeo

must be added up which yields =/4 for all points of the

interval -b/2€ y < b/2.

For interior points of the plate, the series appearing in the

formulas My and My has very good convergence.
a square plate,
1 52
— Eat~T
2k

can be found easily.‘,

For the center of
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The most interesting part of the solution is the formula for the
twisting moment Mxy’ When x < a/2, the quotient of the two hyperbolic

functions decreases exponentially with increasing n and produces s -
good convergence of the series; but on the edge x = a/2 this beneficial
influence is lost and the series converges slowly. If x = a/2 is

kept and the corner y = b/2 is approached, the series becomes

~

(2] n—l o0
§ 2 1 ny 1
(—l) = sin —é— = -ﬁ

and this series is divergent or, if this expression is aamitted, yields

the value «., This singularity of the twisting moment which, of course,

appears at all four corners, is of practical importance. It is true

that real objects always find a way to avoid infinite stresses, Here

the finite thickness of the plate, the finite width of the zone to which

the reactions are applied, and the elastic ylelding of the support may

act in this way, but, nevertheless, the singularity in our soclution

reveals the fact that stresses near the corner will be extremely high

and that it would be wiser to round the corners liberally than to trust . .
the good will of the structure.

Buckling of Cylindrical Panel

The metal skin of the pressurized cabin 1s subdivided into rec-
tangular panels by rings and axial stiffeners (stringers). In every such
panel, the wall is subjected to a hoop stress c¢ due to the cabin
pressure p. Additionally, there may be an axisl stress Oy (tension
or compression) and a shear stress T (fig. 41). The hoop stress og

increases the shear stress T required for buckling in the presence of
a given oy, ‘

For this buckling problem, Kromm (reference 7) has worked out two
diagrams which give the critical shear T as a function of the hoop
stress of assuming elther oy =0 (case "a", fig. 43(a)) or

oy = c¢/2 (case "d", fig. 43(b)). OFf course, the ratio between the two
stresses o0y and U¢ may have any other value between or beyond these

limits, but, since the influence of o0y on the critical shear is not
laerge, the choice made by Kromm is sufficient.

Kromm's paper gives only a short description of the method used for
solving the problem, referring for more details to his earlier papers on
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stability problems in cylinders. A still shorter outline will be given
here of the laborious procedure and an explanation of the diagrams
resulting from it.

The object of the graphs is a rectangular panel, cut from a circular
cylinder of radius a and supported on its edges. Its length is supposed
to be much greater than its width so that the buckling is not influenced

_ much by the support on the curved sides.

When this panel is subjected to the cabin pressure p i1t will bulge
out, again forming a cylindrical surface, but with a smaller radius r < a.
This radius r may easily be found if the lengthwise edges of the panel
are fixed. In the deformed state (fig. 42) a simple consideration of
equilibrium yields for the hoop stress the relation

= -p—r~ ’
%G =T (32)
On the other hand, the length of the arc of radius r and chord b is

2
Z=‘b(1+ b )
' olr?

the length of the same arc before deformation is

2
o —'b(% + b 2)
2ha

o~
[

and hence the hoop strain is

€¢ -——b==-—-=

When oy = 0 (case "a"),
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Equating this to the value from equétion (32),

In case "b;"\ E has simply to be replaced by ZE/(2 - V).

—-

NACA TN 2612,

In connection with the buckling problem, the relations between p
and” r must be expressed by a certain set of dimensionless variables
used there. Using Kromm's notation, the curvature of the undeformed

cylinder is described by the parameter

o o 120 -v2)' b4
0\ nu a2t2

that of the deformed shell, by

_12(1 -v3) bt
5.2

nh r

and the pressure p, by the parameter

(1 -2 )3/2 o

k -
P~ Bk

tljl’d

The relation Jjust found between p and r reads then in case "a":

V& (@ - ag) = 576\ka

i

1,035k,

and in case "b":

q5;(“" “b)

L]
/_-\

0. 8801«.p

1o s G,

(33)

(34)

1n_ i
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After this preparation, the buckling problem for a cylinder of
radius r may be solved. This may be done by either of the two standard
methods, The differential equations for the components u, v, and w
of the displacement may be formulated and solved, or the expression for
the variation of the potential energy may be established and equated to
zero for every possible variation u, v, or w of the displacements
compatible with the boundary conditions. In both cases the displace-
ments are introduced as double Fourier series, and the buckling condi-
tion finally assumes the form that a determinant of infinite order must
be equal to zero. For the numerical evaluation, this determinant is
approached by a section of moderate size, not necessarily situated at
its upper left corner. The diagrams in figures 43(a) and L43(b) have
been computed in this way.

For the application of these diagrams, it is necessary to know the
bbundary conditions assumed. Since the plate was supposed to be long in
the x-direction; no conditions were fixed for the curved edges
x = Constant. On the straight edges, four conditions must be given.

The following choice was made: Displacement parallel to the edge u = O,
radial displacement w = O, clamping moment (see fig. 8) Mg =0, and

additional hoop stress c¢ = 0.

The first three of these conditions appear to be reasonable at first
sight. Also the last one is quite usual in buckling problems of this
kind, but it seems to contradict the assumption of unyielding supports
made for the determination of r. This contradiction may be easily
resolved., The underlying idea is that the panel is part of the wall of
a cylindrical fuselage and has many neighbors which are in the same
situation. When the pressure p 1is applied to these panels, they will
all develop the same hoop stress oy. Although the stringers usually
have but little bending stiffness, they cannot deflect in the v-direction
(fig. 41), because the forces G¢t applied to them from both sides are in -

equilibrium. When buckling occurs, the situation is quite different. A
system of folds is formed in each panel, and with them additional hoop
stresses- c¢ are set up. If the stringer were very stiff, corresponding
‘forces ogt would be transmitted to it, and they would not be the same
from both sides but would pull at some places to one side and at other
places to the other side. When the stringer is weak, as is usual, it
will deflect so much that the stresses become almost zero, and the

safest assumption for the determination of the buckling stress is the

one made. - '

‘The use of the diagrams may now be described. From the given data
VEB and kp are computed according to equations (33) and (34) and

. located in the diagram. The values kP are found at the left side of

~
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the graph and refer to the more-or-less horizontal curves. For \(wy,

some values are given along the upper edge. The curves to which they
refer are almost vertical and join at their lower end, more or less

tangentially, a vertical line bearing the same number on the QTK scale,
From this relation it is easy to interpolate more curves- {EE and to

find the values wa for those curves which are not numbered in the

graph. It also appears that in the right-hand half of the diagram the
ﬂ“b curves are practically identical with the vertical coordinate lines.

From the point which corresponds to the given valueé,of kP and

ﬂ“b follow & horizontal line toward the left and read there /o,
When multiplied by the reference stress

U*:ﬁ——E.___;-t—z- -~ ¢
3 1.-v202 S

it yields the critical value of the shear stress T.

If, incidentally, oy corresponds to one of the two cases "a"

or "b," it is necessary to consult only one of the diagrams. For
other values of o0y it is necessary to use both and then find the final

value 17 Dby interpolation. Since the influence of o, is not great,
even an extrapolation will be possible, within moderate limits,

Stanford University -
Stanford, Calif., September 7, 1950
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Figure 1.~ Cylindrical shell.

Figure 2.- Part cut from a cylindrical shell subjectéd to internal
pressure p.
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Figure L4.- Factor k for 1dngitudinél stress in skin of stiffened shell.
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Figure 5.- Cross section through a pressurized cabin cbnsisting of two
cylindrical shells.
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Figure 6.- Detail of figure 5: Forces at junction of two cylinders,
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Figure 7.- Longitudinal section through cylindrical shell and reinforcing
rings. :

Figure 8.~ Element of cylindrical shell, showing internal forces.
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Figure 9.- Extensional rigidity of shell agaihst cross sectibn of stringers.
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(a) Closely spaced rings, heavy stringers.
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(b) Rings far apart, light stringers.

Figure 10.- Typical distribution of bending moment My and hoop force N¢
in shell between two rings.
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" Figure 12.- Cylindrical shell having a door opening.
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Figure 15.-\ Axial segtion through a shell of revolution.

-
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Figure 16.- Element of a shell of revolution.
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(a) Complete structure.
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(b) Cylinder, bulkhéad, and ring taken apart.

Figure 17.- Axial section through a cylindrical‘shell and a bulkhead.
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-

“Figure 18.- Meridional force 'N¢ ‘and hoép force Ng in two different

bulkheads. Upper half, extremely flat shape; lower half, sufficiently
- ‘dished shape. , .-
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Figure 19.- Notation for an elliptic méridian.
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Figure 20.- Meridional force N¢ and hoop force Ng in twe ellipsoidal-
bulkheads,
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(a) Parts before pressure is applied.
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(b) Exaggerated scheme of deformation.when pressure p is applied to
cabin at left of bulkhead.

Figure 21.- Continuous cylindrical shell having an inserted bulkhead.
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Figure 22.~ Possible shapes of bulkheads.
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Figure 23.—- Forces between parts of the bulkhead shown in right-hand sketch
of figure 22.
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Figure 2h.—lMeridian of a bulkhead, built up from circles.




NACA TN 2612 79

I

;j] _A—L-—Enalkﬁ\eﬁmi-—-————cm

~_NACA —

Figure 25.- Meridian of a special bulkhead designed for minimum.discrepancy
in membrane deformation; distribution of internal forces in this shell
and in adjoining cylinder,
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Figure 26.- Bulkhead for double cylinders, consisting of two ellipsoids
(left), and corresponding spheres (right). -
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Figure 28.~ Affine shell elements.
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Figure 29.- Sign convention for forces transmitted from spherical shells
to connecting ring. ‘

F4+dF |

Figure 30.- Element of ring shown in figure 29,
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Figure 31.- Distributibn of circumferential force Ng and normal force N¢ )
at edge of ellipsoidal bulkhead shown in left half of figure 26.
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Figure 32.- Nose of a pressurized cabin.
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(b) Ellipsoidal shell.

Figure 33.~ Sketches of shells.
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. Figure 35.- Side view of an element of a plate strip.
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Figure 3h,= Plate strip subjected to léteral pressure.
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Figure 36.~ Plate strip undergoing large deflection and straight stiffener.'

A

Figure 37.- Same system as in figure 36, but subjected to an additional
horizontal load. '
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Figure LO.- Rectangular plate and plate element.
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Figure 41.- Cylindrical panel.
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Flgure L42,- Section through cylindrical panel before and after appllcatlon
of internal pressure p.
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