4,023 research outputs found

    The high energy limit of the trajectory representation of quantum mechanics

    Get PDF
    The trajectory representation in the high energy limit (Bohr correspondence principle) manifests a residual indeterminacy. This indeterminacy is compared to the indeterminacy found in the classical limit (Planck's constant to 0) [Int. J. Mod. Phys. A 15, 1363 (2000)] for particles in the classically allowed region, the classically forbiden region, and near the WKB turning point. The differences between Bohr's and Planck's principles for the trajectory representation are compared with the differences between these correspondence principles for the wave representation. The trajectory representation in the high energy limit is shown to go to neither classical nor statistical mechanics. The residual indeterminacy is contrasted to Heisenberg uncertainty. The relationship between indeterminacy and 't Hooft's information loss and equivalence classes is investigated.Comment: 12 pages of LaTeX. No figures. Incorporated into the "Proceedings of the Seventh International Wigner Symposium" (ed. M. E. Noz), 24-29 August 2001, U. of Maryland. Proceedings available at http://www.physics.umd.edu/robo

    Generalized vegetation map of north Merrit Island based on a simplified multispectral analysis

    Get PDF
    A simplified system for classification of multispectral data was used for making a generalized map of ground features of North Merritt Island. Subclassification of vegetation within broad categories yielded promising results which led to a completely automatic method and to the production of satisfactory detailed maps. Changes in an area north of Happy Hammocks are evidently related to water relations of the soil and are not associated with the last winter freeze-damage which affected mainly the mangrove species, likely to reestablish themselves by natural processes. A supplementary investigation involving reflectance studies in the laboratory has shown that the reflectance by detached citrus leaves, of wavelengths lying between 400 microns and 700 microns, showed some variation over a period of seven days during which the leaves were kept in a laboratory atmosphere

    OPERA data and The Equivalence Postulate of Quantum Mechanics

    Get PDF
    An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle speed arising from the Relativistic Quantum Hamilton Jacobi Equation. I show that this is in general not the case. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy--momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.Comment: 8 pages. Standard LaTex. References adde

    The Equivalence Postulate of Quantum Mechanics

    Get PDF
    The Equivalence Principle (EP), stating that all physical systems are connected by a coordinate transformation to the free one with vanishing energy, univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories depend on the Planck length through hidden variables which arise as initial conditions. The formulation has manifest p-q duality, a consequence of the involutive nature of the Legendre transform and of its recently observed relation with second-order linear differential equations. This reflects in an intrinsic psi^D-psi duality between linearly independent solutions of the Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even for bound states. No use of any axiomatic interpretation of the wave-function is made. Tunnelling is a direct consequence of the quantum potential which differs from the usual one and plays the role of particle's self-energy. The QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of the extended real line. This is an important feature as the L^2 condition, which in the usual formulation is a consequence of the axiomatic interpretation of the wave-function, directly follows as a basic theorem which only uses the geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP. As a result, the EP itself implies a dynamical equation that does not require any further assumption and reproduces both tunnelling and energy quantization. Several features of the formulation show how the Copenhagen interpretation hides the underlying nature of QM. Finally, the non-stationary higher dimensional quantum HJ equation and the relativistic extension are derived.Comment: 1+3+140 pages, LaTeX. Invariance of the wave-function under the action of SL(2,R) subgroups acting on the reduced action explicitly reveals that the wave-function describes only equivalence classes of Planck length deterministic physics. New derivation of the Schwarzian derivative from the cocycle condition. "Legendre brackets" introduced to further make "Legendre duality" manifest. Introduction now contains examples and provides a short pedagogical review. Clarifications, conclusions, ackn. and references adde

    Trajectories in the Context of the Quantum Newton's Law

    Full text link
    In this paper, we apply the one dimensional quantum law of motion, that we recently formulated in the context of the trajectory representation of quantum mechanics, to the constant potential, the linear potential and the harmonic oscillator. In the classically allowed regions, we show that to each classical trajectory there is a family of quantum trajectories which all pass through some points constituting nodes and belonging to the classical trajectory. We also discuss the generalization to any potential and give a new definition for de Broglie's wavelength in such a way as to link it with the length separating adjacent nodes. In particular, we show how quantum trajectories have as a limit when 0\hbar \to 0 the classical ones. In the classically forbidden regions, the nodal structure of the trajectories is lost and the particle velocity rapidly diverges.Comment: 17 pages, LateX, 6 eps figures, minor modifications, Title changed, to appear in Physica Script

    Ocular attention-sensing interface system

    Get PDF
    The purpose of the research was to develop an innovative human-computer interface based on eye movement and voice control. By eliminating a manual interface (keyboard, joystick, etc.), OASIS provides a control mechanism that is natural, efficient, accurate, and low in workload

    Control Plane Compression

    Full text link
    We develop an algorithm capable of compressing large networks into a smaller ones with similar control plane behavior: For every stable routing solution in the large, original network, there exists a corresponding solution in the compressed network, and vice versa. Our compression algorithm preserves a wide variety of network properties including reachability, loop freedom, and path length. Consequently, operators may speed up network analysis, based on simulation, emulation, or verification, by analyzing only the compressed network. Our approach is based on a new theory of control plane equivalence. We implement these ideas in a tool called Bonsai and apply it to real and synthetic networks. Bonsai can shrink real networks by over a factor of 5 and speed up analysis by several orders of magnitude.Comment: Extended version of the paper appearing in ACM SIGCOMM 201

    Cyber Threats and NATO 2030: Horizon Scanning and Analysis

    Get PDF
    The book includes 13 chapters that look ahead to how NATO can best address the cyber threats, as well as opportunities and challenges from emerging and disruptive technologies in the cyber domain over the next decade. The present volume addresses these conceptual and practical requirements and contributes constructively to the NATO 2030 discussions. The book is arranged in five short parts...All the chapters in this book have undergone double-blind peer review by at least two external experts.https://scholarworks.wm.edu/asbook/1038/thumbnail.jp
    corecore