951 research outputs found

    Exposure and impact of a mass media campaign targeting sexual health amongst Scottish men who have sex with men: an outcome evaluation

    Get PDF
    Background: This paper explores the exposure and impact of a Scottish mass media campaign: Make Your Position Clear. It ran from October 2009 to July 2010, targeted gay men and other men who have sex with men (MSM), and had two key aims: to promote regular sexual health and HIV testing every 6 months, and to promote the use of appropriate condoms and water-based lubricant with each episode of anal intercourse. Methods: A cross-sectional survey (anonymous and self-report) was conducted 10 months after the campaign was launched (July 2010). Men were recruited from commercial venues. Outcome measures included use of lubricant, testing for sexually transmitted infections and HIV, and intentions to seek HIV testing within the following six months. Linear-by-linear chi-square analysis and binary logistic regressions were conducted to explore the associations between the outcome measures and campaign exposure. Results: The total sample was 822 men (62.6% response rate). Men self-identifying as HIV positive were excluded from the analysis (n = 38). Binary logistic analysis indicated that those with mid or high campaign exposure were more likely to have been tested for HIV in the previous six months when adjusted for age, area of residence and use of the “gay scene” (AOR = 1.96, 95% CI = 1.26 to 3.06, p = .003), but were not more likely to be tested for STIs (AOR = 1.37, 95% CI = 0.88 to 2.16, p = .167). When adjusted for previous HIV testing, those with mid or high campaign exposure were not more likely to indicate intention to be tested for HIV in the following six months (AOR = 1.30, 95% CI = 0.73 to 2.32, p = .367). Those with no campaign exposure were less likely than those with low exposure to have used appropriate lubricant with anal sex partners in the previous year (AOR = 0.42, 95% CI = 0.23 to 0.77, p = .005). Conclusions: The campaign had demonstrable reach. The analysis showed partial support for the role of mass media campaigns in improving sexual health outcomes. This suggests that a role for mass media campaigns remains within combination HIV prevention

    Willingness to participate in future HIV prevention studies among gay and bisexual men in Scotland, UK: a challenge for intervention trials

    Get PDF
    This article examines willingness to participate in future HIV prevention research among gay and bisexual men in Scotland, UK. Anonymous, self-complete questionnaires and Orasure Gäó oral fluid samples were collected in commercial gay venues. 1,320 men were eligible for inclusion. 78.2% reported willingness to participate in future HIV prevention research; 64.6% for an HIV vaccine, 57.4% for a behaviour change study, and 53.0% for a rectal microbicide. In multivariate analysis, for HIV vaccine research, greater age, minority ethnicity, and not providing an oral fluid sample were associated with lower willingness; heterosexual orientation and not providing an oral fluid sample were for microbicides; higher education and greater HIV treatment optimism were for behaviour change. STI testing remained associated with being more willing to participate in microbicide research and frequent gay scene use remained associated with being more willing to participate in behaviour change research. Having an STI in the past 12 months remained significantly associated with being willing to participate in all three study types. There were no associations between sexual risk behaviour and willingness. Although most men expressed willingness to participate in future research, recruitment of high-risk men, who have the potential to benefit most, is likely to be more challenging

    Effects of Salt Stress on Three Ecologically Distinct Plantago Species

    Full text link
    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus both halophytes and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600 800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.MAH was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium). AP acknowledges the Erasmus mobility programme for funding her stay in Valencia to carry out her Master Thesis.Al Hassan, M.; Pacurar, AM.; López Gresa, MP.; Donat Torres, MDP.; Llinares Palacios, JV.; Boscaiu Neagu, MT.; Vicente Meana, Ó. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLoS ONE. 11(8):1-21. doi:10.1371/journal.pone.0160236S12111

    Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila?

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11104-014-2218-2Aims Responses to salt stress of two Gypsophila species that share territory, but with different ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. Theworking hypothesis is that salt tolerance shapes the presence of these species in their specific habitats. Methods Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation structure at the sampling site, seed germination and seedling development, growth and flowering, synthesis of proline and cation accumulation under artificial conditions of increasing salt stress and effect of PEG on germination and seedling development. Results Soil salinity was low at the all sampling points where the two species grow, but moisture was higher in the area of G. tomentosa. Differences were found in the species salt and drought tolerance. The different parameters tested did not show a clear pattern indicating the main role of salt tolerance in plant distribution. Conclusions G. tomentosa cannot be considered a true halophyte as previously reported because it is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats bordering salt marshes is a strategy to avoid plant competition and extreme water stressSoriano, P.; Moruno Manchón, JF.; Boscaiu Neagu, MT.; Vicente Meana, Ó.; Hurtado, A.; Llinares Palacios, JV.; Estrelles, E. (2014). Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila?. Plant and Soil. 384(1-2):363-379. doi:10.1007/s11104-014-2218-2S3633793841-2Alonso MA (1996) Flora y vegetación del Valle de Villena (Alicante). Instituto de Cultura Juan Gil-Albert, AlicanteAlvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. Plant Physiol 156:612–616Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216Ashraf MY (2009) Salt tolerance mechanisms in some halophytes from Saudi Arabia and Egypt. Res J Agric Biol Sci 5:191–206Bates LS, Waldren RP, Tear LD (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207Ben-Gal A, Neori-Borochov H, Yermiyahu U, Shani U (2009) Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole plant response to salinity? Environ Exp Bot 65:232–237Biondi E (2011) Phytosociology today: Methodological and conceptual evolution. Plant Biosyst 145:19–29Boscaiu M, Bautista I, Lidón A, Llinares J, Lull C, Donat P, Mayoral O, Vicente O (2013a) Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiol Plant 35:2193–2204Boscaiu M, Llul C, Llinares J, Vicente O, Boira H (2013b) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849Breckle SW (1999) Halophytic and gypsophytic vegetation of the Ebro-Basin at Los Monegros. In: Melic A, Blasco-Zumeta J (eds) Manifiesto científico por Los Monegros, vol 24, Bol. SEA., pp 101–104Brenchley JL, Probert RJ (1998) Seed germination responses to some environmental factors in the sea grass Zoostera capricorni from eastern Australia. Aquat Bot 62:177–188Cañadas EM, Ballesteros M, Valle F, Lorite J (2013) Does gypsum influence seed germination? Turk J Bot 38:141–147Chen Z, Cuin TA, Zhou M et al (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255Chutipaijit S, Cha-Um S, Sompornailin K (2009) Differential accumulation of proline and flavonoids in Indica rice varieties against salinity. Pak J Bot 41:2497–2506Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769Debussche M, Thompson JD (2003) Habitat differentiation between two closely related Mediterranean plant species, the endemic Cyclamen balearicum and the widespread C. repandum. Acta Oecol 24:35–45Eskandari H, Kazemi K (2011) Germination and seedling properties of different wheat cultivars under salinity conditions. Not Sci Biol 3:130–134FAO (2006) Guidelines for soil descriptions, 5th edn. Food and Agricultural Organization of United Nation, RomeFerrandis P, Herranz JM, Copete MA (2005) Caracterización florística y edáfica de las estepas yesosas de Castilla-La Mancha. Invest Agrar Sist Recur For 14:195–216Flowers TJ, Hall JL (1978) Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23:310–321Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–335García-Fuentes A, Salazar C, Torres JA, Cano E, Valle F (2001) Review of communities of Lygeum spartum L. in the south-eastern Iberian Peninsula (western Mediterranean). J Arid Environ 48:323–339Géhu JM (2006) Dictionnaire de Sociologie et Synécologie Végétales. J. Cramer, Berlin-Stuttgart, p 899Géhu JM (2011) On the opportunity to celebrate the centenary of modern phytosociology in 2010. Plant Biosyst 145(suppl):4–8Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. Canberra, Australia. CAB International, The Australian National University, WallingfordGrigore MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19Grigore MN, Villanueva M, Boscaiu M, Vicente O (2012a) Do halophytes really require salts for their growth and development? An experimental approach mitigation of salt stress-induced inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not Sci Biol 4:23–29Grigore MN, Boscaiu M, Llinares J, Vicente O (2012b) Mitigation of salt stressed-induced Inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not Bot Horti Agrobo 40:58–66Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102Ishikawa SI, Kachi N (2000) Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats. Ecol Res 15:241–247Kebreab E, Murdoch AJ (1999) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J Exp Bot 50:655–664Khan MA (2002) Halophyte seed germination: Success and Pitfalls. In: Hegazi AM, El-Shaer HM, El-Demerdashe S et al (eds) International symposium on optimum resource utilization in salt affected ecosystems in arid and semi arid regions. Desert Research Centre, Cairo, pp 346–358Khan MA, Gul B, Weber DJ (2000) Germination responses of Salicornia rubra to temperature and salinity. J Arid Environ 45:207–214Khan A, Rayner GD (2003) Robustness to non-normality of common tests for the many-sample location problem. J Appl Math Decis Sci 7:187–206Lidón A, Boscaiu M, Collado F, Vicente O (2009) Soil requirements of three salt tolerant, endemic species from south-east Spain. Not Bot Horti Agrobo 37:64–70López González G (1990) Gypsohila L. In: Castroviejo S, Laínz M, López G et al (eds) Flora Ibérica 2. Real Jardín Botánico, Madrid, pp 408–415Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218Madidi S, Baroudi B, Ameur FB (2004) Effects of salinity on germination and early growth of barley (Hordeum vulgare L.) cultivars. Int J Agric Biol 6:767–770Marchal FM, Lendínez ML, Salazar C, Torres JA (2008) Aportaciones al conocimiento de la vegetación gispsícola en el occidente de la provincia de Granada (sur de España). Lazaroa 29:95–100Médail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from southern France and Corsica: implications for biodiversity conservation. Biol Conserv 80:269–281Meyer SE (1986) The ecology of gypsophile endemism in the Eastern Mojave desert. Ecology 67:1303–1313Moruno F, Soriano P, Oscar V, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 9:18–23Mota JF, Sánchez Gómez P, Merlo Calvente ME, Catalán Rodríguez P, Laguna Lumbreras E, de la Cruz RM, Navarro Reyes FB, Marchal Gallardo F, Bartolomé Esteban C, Martínez Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, Martínez Hernández F, Garrido Becerra JA, Pérez García FJ (2009) Aproximación a la checklist de los gipsófitos ibéricos. An Biol 31:71–80Mota JF, Sola AJ, Jiménez-Sánchez ML, Pérez-García F, Merlo ME (2004) Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers Conserv 13:1797–1808Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343Peinado M, Martínez-Parras JM (1982) Sobre la posición fitosociológica de Gypsophila tomentosa L. Lazaroa 4:129–140Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311Rasband WS (1997–2012) ImageJ. U S National Institutes of Health. http://rsb.info.nih.gov/ij/ , Bethesda, MarylandRivas-Martínez S (2005) Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst 139:135–144Rivas-Martínez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org . Accessed 1 July 2013Rivas-Martínez S, Fernández-González F, Loidi J, Lousã M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot 14:5–341Salmerón-Sánchez E, Martínez-Nieto MI, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Gil de Carrasco C, Ramos-Miras JJ, Lozano R, Merlo ME, Mota JF (2014) Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates: dolomite and gypsum. Plant Soil 374:233–250Saradhi P, Alia P, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environ Exp Bot 77:63–76Tipirdamaz R, Gagneul D, Duhaze C, Ainouche A, Monnier C, Ozkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607USDA-ARS (2008) Research databases. Bibliography on salt tolerance. George E. Brown, Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA. http://www.ars.usda.gov/Services/docs.htm?docid=8908USSL Staff (1954) Diagnosis and improvement of saline and alkali soils. US Department of Agriculture Handbook no. 60, 160 ppVicente O, Boscaiu M, Naranjo M, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–48

    Objectives

    Get PDF

    Rising from the Sea: Correlations between Sulfated Polysaccharides and Salinity in Plants

    Get PDF
    High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10
    corecore