225 research outputs found

    Magnetically responsive layer-by-layer microcapsules can be retained in cells and under flow conditions to promote local drug release without triggering ROS production.

    Get PDF
    Nanoengineered vehicles have the potential to deliver cargo drugs directly to disease sites, but can potentially be cleared by immune system cells or lymphatic drainage. In this study we explore the use of magnetism to hold responsive particles at a delivery site, by incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) into layer-by-layer (LbL) microcapsules. Microcapsules with SPIONs were rapidly phagocytosed by cells but did not trigger cellular ROS synthesis within 24 hours of delivery nor affect cell viability. In a non-directional cell migration assay, SPION containing microcapsules significantly inhibited movement of phagocytosing cells when placed in a magnetic field. Similarly, under flow conditions, a magnetic field retained SPION containing microcapsules at a physiologic wall shear stress of 0.751 dyne cm-2. Even when the SPION content was reduced to 20%, the majority of microcapsules were still retained. Dexamethasone microcrystals were synthesised by solvent evaporation and underwent LbL encapsulation with inclusion of a SPION layer. Despite a lower iron to volume content of these structures compared to microcapsules, they were also retained under shear stress conditions and displayed prolonged release of active drug, beyond 30 hours, measured using a glucocorticoid sensitive reporter cell line generated in this study. Our observations suggest use of SPIONs for magnetic retention of LbL structures is both feasible and biocompatible and has potential application for improved local drug delivery

    Potential risk factors associated with human encephalitis: application of canonical correlation analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection of the CNS is considered to be the major cause of encephalitis and more than 100 different pathogens have been recognized as causative agents. Despite being identified worldwide as an important public health concern, studies on encephalitis are very few and often focus on particular types (with respect to causative agents) of encephalitis (e.g. West Nile, Japanese, etc.). Moreover, a number of other infectious and non-infectious conditions present with similar symptoms, and distinguishing encephalitis from other disguising conditions continues to a challenging task.</p> <p>Methods</p> <p>We used canonical correlation analysis (CCA) to assess associations between set of exposure variable and set of symptom and diagnostic variables in human encephalitis. Data consists of 208 confirmed cases of encephalitis from a prospective multicenter study conducted in the United Kingdom. We used a covariance matrix based on Gini's measure of similarity and used permutation based approaches to test significance of canonical variates.</p> <p>Results</p> <p>Results show that weak pair-wise correlation exists between the risk factor (exposure and demographic) and symptom/laboratory variables. However, the first canonical variate from CCA revealed strong multivariate correlation (ρ = 0.71, se = 0.03, p = 0.013) between the two sets. We found a moderate correlation (ρ = 0.54, se = 0.02) between the variables in the second canonical variate, however, the value is not statistically significant (p = 0.68). Our results also show that a very small amount of the variation in the symptom sets is explained by the exposure variables. This indicates that host factors, rather than environmental factors might be important towards understanding the etiology of encephalitis and facilitate early diagnosis and treatment of encephalitis patients.</p> <p>Conclusions</p> <p>There is no standard laboratory diagnostic strategy for investigation of encephalitis and even experienced physicians are often uncertain about the cause, appropriate therapy and prognosis of encephalitis. Exploration of human encephalitis data using advanced multivariate statistical modelling approaches that can capture the inherent complexity in the data is, therefore, crucial in understanding the causes of human encephalitis. Moreover, application of multivariate exploratory techniques will generate clinically important hypotheses and offer useful insight into the number and nature of variables worthy of further consideration in a confirmatory statistical analysis.</p

    Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity

    Get PDF
    Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity

    Semantic Similarity for Automatic Classification of Chemical Compounds

    Get PDF
    With the increasing amount of data made available in the chemical field, there is a strong need for systems capable of comparing and classifying chemical compounds in an efficient and effective way. The best approaches existing today are based on the structure-activity relationship premise, which states that biological activity of a molecule is strongly related to its structural or physicochemical properties. This work presents a novel approach to the automatic classification of chemical compounds by integrating semantic similarity with existing structural comparison methods. Our approach was assessed based on the Matthews Correlation Coefficient for the prediction, and achieved values of 0.810 when used as a prediction of blood-brain barrier permeability, 0.694 for P-glycoprotein substrate, and 0.673 for estrogen receptor binding activity. These results expose a significant improvement over the currently existing methods, whose best performances were 0.628, 0.591, and 0.647 respectively. It was demonstrated that the integration of semantic similarity is a feasible and effective way to improve existing chemical compound classification systems. Among other possible uses, this tool helps the study of the evolution of metabolic pathways, the study of the correlation of metabolic networks with properties of those networks, or the improvement of ontologies that represent chemical information

    Anthropometric and glucometabolic changes in an aged mouse model of lipocalin-2 overexpression

    Get PDF
    Background:: Lipocalin-2 (LCN2) is widely expressed in the organism with pleiotropic roles. In particular, its overexpression correlates with tissue stress conditions including inflammation, metabolic disorders, chronic diseases and cancer. Objectives:: To assess the effects of systemic LCN2 overexpression on adipose tissue and glucose metabolism. Subjects:: Eighteen-month-old transgenic mice with systemic LCN2 overexpression (LCN2-Tg) and age/sex-matched wild-type mice. Methods:: Metabolic cages; histology and real-time PCR analysis; glucose and insulin tolerance tests; ELISA; flow cytometry; microPET and serum analysis. Results:: LCN2-Tg mice were smaller compared to controls but they ate (P = 0.0156) and drank (P = 0.0057) more and displayed a higher amount of visceral adipose tissue. Furthermore, LCN2-Tg mice with body weight 6520 g showed adipocytes with a higher cell area (P &lt; 0.0001) and altered expression of genes involved in adipocyte differentiation and inflammation. In particular, mRNA levels of adipocyte-derived Pparg (P 64 0.0001), Srebf1 (P &lt; 0.0001), Fabp4 (P = 0.056), Tnfa (P = 0.0391), Il6 (P = 0.0198), and Lep (P = 0.0003) were all increased. Furthermore, LCN2-Tg mice displayed a decreased amount of basal serum insulin (P = 0.0122) and a statistically significant impaired glucose tolerance and insulin sensitivity consistent with Slc2a2 mRNA (P 64 0.0001) downregulated expression. On the other hand, Insr mRNA (P 64 0.0001) was upregulated and correlated with microPET analysis that demonstrated a trend in reduced whole-body glucose consumption and MRGlu in the muscles and a significantly reduced MRGlu in brown adipose tissue (P = 0.0247). Nevertheless, an almost nine-fold acceleration of hexokinase activity was observed in the LCN2-Tg mice liver compared to controls (P = 0.0027). Moreover, AST and ALT were increased (P = 0.0421 and P = 0.0403, respectively), which indicated liver involvement also demonstrated by histological staining. Conclusions:: We show that LCN2 profoundly impacts adipose tissue size and function and glucose metabolism, suggesting that LCN2 should be considered as a risk factor in ageing for metabolic disorders leading to obesity

    PeptX: Using Genetic Algorithms to optimize peptides for MHC binding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding between the major histocompatibility complex and the presented peptide is an indispensable prerequisite for the adaptive immune response. There is a plethora of different <it>in silico </it>techniques for the prediction of the peptide binding affinity to major histocompatibility complexes. Most studies screen a set of peptides for promising candidates to predict possible T cell epitopes. In this study we ask the question vice versa: Which peptides do have highest binding affinities to a given major histocompatibility complex according to certain <it>in silico </it>scoring functions?</p> <p>Results</p> <p>Since a full screening of all possible peptides is not feasible in reasonable runtime, we introduce a heuristic approach. We developed a framework for Genetic Algorithms to optimize peptides for the binding to major histocompatibility complexes. In an extensive benchmark we tested various operator combinations. We found that (1) selection operators have a strong influence on the convergence of the population while recombination operators have minor influence and (2) that five different binding prediction methods lead to five different sets of "optimal" peptides for the same major histocompatibility complex. The consensus peptides were experimentally verified as high affinity binders.</p> <p>Conclusion</p> <p>We provide a generalized framework to calculate sets of high affinity binders based on different previously published scoring functions in reasonable runtime. Furthermore we give insight into the different behaviours of operators and scoring functions of the Genetic Algorithm.</p

    The Nature of Knowledge in Composition and Literary Understanding: The Question of Specificity

    Get PDF
    ↵PETER SMAGORINSKY is Assistant Professor, College of Education, University of Oklahoma, 820 Van Vleet Oval, Norman, OK 73019-0. He specializes in classroom literacy.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    Get PDF
    Chagas disease, caused by Trypanosoma cruzi, is a neglected disease with 20 million people at risk in Latin America. The main control strategies are based on insecticide spraying to eliminate the domestic vectors, the most effective of which is Triatoma infestans. This approach has been very successful in some areas. However, there is a constant risk of recrudescence in once-endemic regions resulting from the re-establishment of T. infestans and the invasion of other triatomine species. To detect low-level infestations of triatomines after insecticide spraying, we have developed a new epidemiological tool based on host responses against salivary antigens of T. infestans. We identified and synthesized a highly immunogenic salivary protein. This protein was used successfully to detect differences in the infestation level of T. infestans of households in Bolivia and the exposure to other triatomine species. The development of such an exposure marker to detect low-level infestation may also be a useful tool for other disease vectors

    Age-Related Comparisons of Evolution of the Inflammatory Response After Intracerebral Hemorrhage in Rats

    Get PDF
    In the hours to days after intracerebral hemorrhage (ICH), there is an inflammatory response within the brain characterized by the infiltration of peripheral neutrophils and macrophages and the activation of brain-resident microglia and astrocytes. Despite the strong correlation of aging and ICH incidence, and increasing information about cellular responses, little is known about the temporal- and age-related molecular responses of the brain after ICH. Here, we monitored a panel of 27 genes at 6 h and 1, 3, and 7 days after ICH was induced by injecting collagenase into the striatum of young adult and aged rats. Several molecules (CR3, TLR2, TLR4, IL-1β, TNFα, iNOS, IL-6) were selected to reflect the classical activation of innate immune cells (macrophages, microglia) and the potential to exacerbate inflammation and damage brain cells. Most of the others are associated with the resolution of innate inflammation, alternative pathways of macrophage/microglial activation, and the repair phase after acute injury (TGFβ, IL-1ra, IL-1r2, IL-4, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22). In young animals, the up-regulation of 26 in 27 genes (not IL-4) was detected within the first week. Differences in timing or levels between young and aged animals were detected for 18 of 27 genes examined (TLR2, GFAP, IL-1β, IL-1ra, IL-1r2, iNOS, IL-6, TGFβ, MMP9, MMP12, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22), with a generally less pronounced or delayed inflammatory response in the aged animals. Importantly, within this complex response to experimental ICH, the induction of pro-inflammatory, potentially harmful mediators often coincided with resolving and beneficial molecules
    corecore