118 research outputs found

    On some issues in the computational modelling of spacer-filled channels for membrane distillation

    Get PDF
    This study addresses issues which arise in the computational and experimental modelling of flow and heat/mass transfer in membrane distillation and other processes adopting spacer-filled channels (either planar or spiral wound), but have not been sufficiently clarified in the literature so far. Most of the argumentations presented are based on original computational results obtained by the authors by finite volume simulations; some literature results are also considered. The questions addressed regard the choice of scales for the reduction of data and the definition of dimensionless numbers (Re, f, Nu, Sh); the definition of average heat or mass transfer coefficients; the combined effects of the parameters that characterize the process (spacer pitch to channel height ratio l/H, flow attack angle γ and Reynolds number Re) and the applicability of simple correlations; the influence of the spacer's thermal conductivity. In regard to the influence of the parameters, Re, l/H and γ were found to interact heavily, making a separate-effect analysis impossible and power-law friction or heat/mass transfer correlations of little use. Thermal conduction in the spacer, even for low-conductivity polymeric spacers (λ â‰ˆ 0.15 Wm− 1 K− 1), was found to be responsible for up to 10% of the total heat transfer

    Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat

    Get PDF
    UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP

    Evolution of nonspecific duodenal lymphocytosis over 2 years of follow-up

    Get PDF
    AIM: To assess the evolution of duodenal lymphocytosis (DL), a condition characterized by increased intraepithelial lymphocytes (IELs), over 2 years of follow-up. METHODS: Consecutive patients undergoing upper endoscopy/histology for abdominal pain, diarrhea, weight loss, weakness or other extraintestinal features compatible with celiac disease (CD) were included. Evaluation of IELs infiltrate in duodenal biopsy samples was carried out by CD3-immunohistochemistry and expressed as number of positive cells/100 enterocytes. Diagnostic agreement on the IELs count was tested by calculating the weighted k coefficient. All patients underwent serological detection of autoantibodies associated with CD: IgG and IgA anti-tissue transglutaminase and endomysium. Each patient underwent further investigations to clarify the origin of DL at baseline and/or in the course of 2 years of follow-up every six months. Autoimmune thyroiditis, intestinal infections, parasitic diseases, bacterial intestinal overgrowth, hypolactasia and wheat allergy were detected. Colonoscopy and enteric magnetic resonance imaging were performed when necessary. Risk factors affecting the final diagnosis were detected by multinomial logistic regression and expressed as OR. RESULTS: Eighty-five patients (16 males, 69 females, aged 34.1 ± 12.5 years) were followed up for a mean period of 21.7 ± 11.7 mo. At baseline, endoscopy/duodenal biopsy, CD3 immunohistochemistry revealed: > 25 IELs/100 enterocytes in 22 subjects, 15-25 IELs in 37 and < 15 IELs in 26. They all had negative serum anti-transglutaminase and anti-endomysium, whilst 5 showed IgG anti-gliadin positivity. In the course of follow-up, 23 developed CD seropositivity and gluten sensitivity (GS) was identified in 19. Other diagnoses were: 5 Helicobacter pylori infections, 4 jejunal Crohn's disease, 1 lymphocytic colitis and 1 systemic sclerosis. The disease in the remaining 32 patients was classified as irritable bowel syndrome because of the lack of diagnostic evidence. At multivariate analysis, the evolution towards CD was associated with an IELs infiltrate > 25 (OR = 1640.4) or 15-25 (OR = 16.95), human leukocyte antigen (HLA) DQ2/8 (OR = 140.85) or DQA1∗0501 (OR = 15.36), diarrhea (OR = 5.56) and weakness (OR = 11.57). GS was associated with IELs 15-25 (OR = 28.59), autoimmune thyroiditis (OR = 87.63), folate deficiency (OR = 48.53) and diarrhea (OR = 54.87). CONCLUSION: DL may have a multifactorial origin but the IELs infiltrate and HLA are strong predictive factors for CD development and a clinical diagnosis of GS

    Helicobacter pylori clarithromycin resistance assessment: are gastric antral biopsies sufficient?

    Get PDF
    Gastric biopsy ssampling could affect accuracy of Helicobacter pylori clarithromycin resistance assessment due to coexistence of susceptible and resistant strains (i.e. heteroresistance) either in same gastric site (intraniche) or in two different gastric sites (interniche). This study aimed to assess differences in the H. pylori clarithromycin resistance prevalence in relation to the gastric biopsy sampling by using Taqman-real time polymerase chain reaction (PCR). The study enrolled 137 patients. Primary clarithromycin resistance was observed in 15 isolates exclusively in antrum, in 7 cases exclusively in gastric body, and in 3 patients in both gastric sites. The overall prevalence of clarithromycin resistance was 13.1% by using exclusively antral biopsies, and 18.2% by using biopsies from both gastric sites. Moreover, intra-niche heteroresistance was observed in 19 (76%) out of 25 patients harbouring resistant strains. Our data found a heterogeneous distribution of resistant H. pylori strains in the stomach. Similarly to culture, gastric biopsies from both antrum and gastric body are needed to increase the accuracy of PCR-based methods for clarithromycin resistance assessment

    bending stiffness of truss reinforced steel concrete composite beams

    Get PDF
    This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss; once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed

    Occurrence of Legionella in showers at recreational facilities.

    Get PDF
    Critical environments, including water systems in recreational settings, represent an important source of Legionella pneumophila infection in humans. In order to assess the potential risk for legionellosis, we analyzed Legionella contamination of water distribution systems in 36 recreational facilities equipped with swimming pools. One hundred and sixty water samples were analyzed from shower heads or taps located in locker rooms or in bathrooms. By culture method and polymerase chain reaction, 41/160 samples were positive for Legionella from 12/36 recreational centers. Hotels (57.1%) and sports centers (41.2%) were the most contaminated. L. pneumophila serotypes 2–14 (25/41) were more frequently found than serotype 1 (10/41). Samples at temperature ≥30 °C were more frequently positive than samples at temperature <30 °C (n = 39 vs n = 2, p < 0.00001). The presence of L. pneumophila was investigated by comparison with heterotrophic plate count (HPC), an indicator of water quality. The presence of L. pneumophila was associated more frequently with high and intermediate HPC load at 37 °C, therefore should be considered a potential source when HPC at 37 °C is >10 CFU/mL. Maintenance, good hygiene practices, interventions on the hydraulic system and regular controls must be implemented to minimize exposure to L. pneumophila infection risk

    Multicentre harmonisation of a six-colour flow cytometry panel for naïve/memory T cell immunomonitoring

    Get PDF
    Background. Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. Methods. The Italian National Institute of Health (Istituto Superiore di Sanita, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naive/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. Results. Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naive/memory subset frequencies particularly in the whole blood setting. Conclusion. Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients
    • …
    corecore