3 research outputs found

    Structure and Substrate Specificity of <i>S</i>‑Methyl Thiourocanate Hydratase

    No full text
    Nicotinamide adenine dinucleotide (NAD+) is a common cofactor in enzyme-catalyzed reactions that involve hydride transfers. In contrast, urocanase and urocanase-like enzymes use NAD+ for covalent electrophilic catalysis. Deciphering avenues by which this unusual catalytic strategy has diversified by evolution may point to approaches for the design of novel enzymes. In this report, we describe the S-methyl thiourocanate hydratase (S-Me-TUC) from Variovorax sp. RA8 as a novel member of this small family of NAD+-dependent hydratases. This enzyme catalyzes the 1,4-addition of water to S-methyl thiourocanate as the second step in the catabolism of S-methyl ergothioneine. The crystal structure of this enzyme in complex with the cofactor and a product analogue identifies critical sequence motifs that explain the narrow and nonoverlapping substrate scopes of S-methyl thiourocanate-, urocanate-, thiourocanate-, and Nτ-methyl urocanate-specific hydratases. The discovery of a S-methyl ergothioneine catabolic pathway also suggests that S-methylation or alkylation may be a significant activity in the biology of ergothioneine

    <i>In Vitro</i> Selection of Functional Lantipeptides

    No full text
    In this report we present a method to identify functional artificial lantipeptides. <i>In vitro</i> translation coupled with an enzyme-free protocol for posttranslational modification allows preparation of more than 10<sup>11</sup> different lanthionine containing peptides. This diversity can be searched for functional molecules using mRNA-lantipeptide display. We validated this approach by isolating binders toward Sortase A, a transamidase which is required for virulence of <i>Staphylococcus aureus</i>. The interaction of selected lantipeptides with Sortase A is highly dependent on the presence of a (2<i>S</i>,6<i>R</i>)-lanthionine in the peptide and an active conformation of the protein

    Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD

    Get PDF
    Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from <i>Mycobacterium smegmatis</i>. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy
    corecore