14 research outputs found

    Eine EinschÀtzung von FutterqualitÀtseffekten auf heterotrophe Protisten mit einer kritischen Stellungnahme zu einer neuen Messtechnik (Flow CAM)

    Get PDF
    In this thesis the Flow CAM is examined for possible applications in the field as well as for experimental setups under controlled conditions. The Flow CAM is supposed to replace tedious, traditional methods like microscopic counting in planktological surveys. The daily routine sampling and measurement program of important parameters such as microscopic counts and chlorophyll measurements at the sampling station “HelgolĂ€nder Reede” provide the best background against which to test the reliability of Flow CAM measurements. The expectation on this technology was high since the Flow CAM, in contrast to other particle counters, takes pictures of each particle. Thus, it is possible not only to measure the distribution of particles in water samples but also enables the identification of each particle. Each captured particle on the digitalized picture is characterized by twenty Flow CAM parameters (e.g. length, width, fluorescence) assigned to it. This kind of particle signature is supposed to help to identify such a particle in new subsequent measurements, which would shorten time for particle quantification tremendously. In some cases this might be possible. The results presented here, however, show that much more effort has to be used for appropriate data acquisition with the Flow CAM. Therefore, several factors are illustrated in Chapter II which determine the accuracy of Flow CAM measurements in the fluorescence triggered image mode, such as camera and fluorescence settings which are of great importance in this measurement mode. Particles are potentially not photographed, and thereby missed, because they are not recognized by the camera or because their fluorescence is too low. The most serious factors which determine the measurement success of the Flow CAM are particle concentration and pump speed. The ability of the Flow CAM to measure the fluorescence of particles is not absolute but rather dependent on pump speeds. The Flow CAM performance on field samples is presented in Chapter III. In order to be able to measure the wide size range of phytoplankton and microzooplankton, three different flowcell sizes were used. All of these were measured in two of the three available measurement modes, the AutoImage and the fluorescence triggered image mode. The results in the AutoImage mode showed that the Flow CAM measures particle densities correctly. The main proportion of these particles, however, consisted almost exclusively of detritus. The fluorescence triggered image mode, which is supposed to measure fluorescent particles selectively, captured also a large amount of detritus due to co-captures of fluorescent particles. In comparison to microscopic counts the Flow CAM underestimates the abundances of plankton species in most cases. This is due to the relatively high threshold of the fluorescence detector and the different pump speeds which were used to increase the contact probability with fluorescent particles. The effect of food quality on the phagotrophic flagellate Oxyrrhis marina is presented in Chapter IV. Up to date little is known about how such primitively single-celled heterotrophs are affected. Feeding experiments showed that O. marina does not distinguish between food of different qualities; feeding seemed to be food quality independent. The growth rate, however, was lower when O. marina was fed with phosphorus depleted food. Nitrogen depleted food on the other hand had no effect on growth. The attempt to explain this by comparing enhanced respiration rates failed since O. marina fed nitrogen or phosphorus depleted food respired at similarly ehanced rates to excrete the surplus carbon. Therefore, the elemental phosphorus may be the limiting element for such fast growing heterotrophs. The extent to which O. marina select between different food qualities depending on its precondition is presented in Chapter V. For this purpose the Flow CAM was used to discriminate between phosphorus and nitrogen depleted food. O. marina, however, did not feed selectively but rather reacted with different ingestion rates depending on its precondition. When O. marina fed in single food treatments containing that element which was limiting in its precondition treatment, O. marina reacted with compensatory feeding. This shows that O. marina can perceive the limiting nutrient in its own cell as well as in the nutrient composition of its food source. The the fact that O. marina continued feeding on the food source with which it was fed before indicated that post-gut ingestion play a higher role in O. marina than pre-gut ingestion. This present thesis is aimed at revealing some of the weak points of the Flow CAM. These shortcomings are to be further identified in order to ensure that the Flow CAM can possibly be used for automatic counting processes in the future. The role which heterotroph protists can play in the food web and the effect food of different qualities can have on them is shown in the experiments presented here using the model organism O. marina. Further investigations are needed to establish whether these results can be transferred to other protists.Die vorliegende Arbeit beschĂ€ftigt sich sowohl mit der Einsetzbarkeit der Flow CAM fĂŒr planktologische Untersuchungen im Feld, als auch fĂŒr experimentelle Fragestellungen unter kontrollierten Laborbedingungen. UrsprĂŒnglich war die Flow CAM als geeignetes Hilfsmittel gedacht, Wasserproben und deren Planktonbestandteile in kĂŒrzester Zeit zu messen, um gegebenenfalls die zeitintensiven, traditionellen ZĂ€hlmethoden mit dem Mikroskop abzulösen. Die langen Erfahrungen und die tĂ€glichen Arbeiten an der HelgolĂ€nder Messstation „Reede“ sollten deshalb beste Voraussetzungen bieten, um die FĂ€higkeiten der Flow CAM mit einigen Routineparametern (z.B. MikroskopzĂ€hlungen und Chlorophyll-Messungen) zu vergleichen und ihre GlaubwĂŒrdigkeit zu testen. Große Erwartungen wurden in die Flow CAM gesetzt, da sie im Vergleich zu bisherigen PartikelzĂ€hlern digitale Bilder macht, die es qualitativ ermöglichen, Verteilungsmuster von erkennbaren Partikeln zu bestimmen. Jeder digital erfasste Partikel erhĂ€lt eine Art Signatur bestehend aus zwanzig verschiedenen Flow CAM Parametern (z.B. LĂ€nge, Breite, Fluoreszenz), die es theoretisch ermöglichen sollten eine Gruppe oder eine Art eindeutig zu charakterisieren. Anhand der Signatur sollte es in erneuten Messungen leicht möglich sein die so definierten Partikel wieder zu finden, was eine Quantifizierung enorm vereinfachen wĂŒrde. In manchen FĂ€llen dĂŒrfte dies auch funktionieren, jedoch zeigen die hier vorliegenden Ergebnisse, dass eher darauf zu achten ist, wie die Flow CAM in den einzelnen Messmodi Partikel misst, um glaubhafte ZĂ€hldaten ĂŒberhaupt zu erhalten. In Kapitel II werden deshalb verschiedenste Faktoren prĂ€sentiert, die die Flow CAM Ergebnisse im Fluoreszenz-Modus enorm beeintrĂ€chtigen. Dazu zĂ€hlen bestimmte Einstellungen der digitalen Kamera bzw. Einstellungen des Fluoreszenz-Detektors, die fĂŒr diesen Messmodus sehr wichtig sind. Es besteht die Gefahr, dass Partikel deshalb nicht fotografiert werden, weil sie entweder von der Kamera nicht erkannt werden oder weil sie zu wenig Fluoreszenz besitzen. Viel wichtiger sind aber noch die Auswirkungen von Partikeldichten und Pumpgeschwindigkeiten, die ĂŒber den Erfolg der Flow CAM Messungen entscheiden. Zudem darf die gemessene Fluoreszenz von einem Partikel nicht als absolute Fluoreszenz gewertet werden, sondern ist auch hier abhĂ€ngig von der Pumpgeschwindigkeit. In Kapitel III wird die FĂ€higkeit der Flow CAM im Feld unter Beweis gestellt. Um das gesamte GrĂ¶ĂŸenspektrum des Phytoplanktons und Mikrozooplanktons abdecken zu können, mussten drei verschiedene GrĂ¶ĂŸenfraktionen gemessen werden. Alle drei GrĂ¶ĂŸen wurden mit zwei der drei möglichen Messmodi der Flow CAM gemessen (AutoImage Modus und Fluoreszenz-Modus). Die Ergebnisse zeigen, dass der AutoImage modus der Flow CAM zur Bestimmung der Gesamtpartikelkonzentration im Wasser zuverlĂ€ssige Ergebnisse erzielt. Jedoch werden in diesem Messmodus hauptsĂ€chlich Detrituspartikel aufgenommen. Der Fluoreszenz-Modus hingegen sollte theoretisch nur fluoreszierende Partikel aufnehmen, um die Anzahl an Detritus zu verringern. Dies ist jedoch nicht der Fall, weil eine Vielzahl an Detrituspartikeln mit fluoreszierenden Partikeln mit gemessen wird. Im Vergleich zu den ZĂ€hldaten unter dem Mikroskop unterschĂ€tzt die Flow CAM die Abundanz von einzelnen Planktonarten in fast allen FĂ€llen. Dies lĂ€sst sich hauptsĂ€chlich auf den relativ hohen Schwellenwert des Fluoreszenz-Detektors und auf die variablen Pumpgeschwindigkeiten zurĂŒckfĂŒhren, die verwendet wurden, um die Kontaktraten mit fluoreszierenden Partikeln (Planktern) zu erhöhen. Kapitel IV beschĂ€ftigt sich zunĂ€chst mit den Auswirkungen von unterschiedlichen FutterqualitĂ€ten auf den phagotrophen Flagellaten Oxyrrhis marina. Bis jetzt ist wenig bekannt darĂŒber, inwieweit solch primitiv organisierten Einzeller von unterschiedlichen FutterqualitĂ€ten betroffen sind. In mehreren Fraßexperimenten zeigt sich dass dieser Einzeller nicht zwischen unterschiedlichen FutterqualitĂ€ten unterscheidet; somit scheint die Futteraufnahme qualitĂ€tsunabhĂ€ngig zu sein. Allerdings wirkt sich Phosphor limitiertes Futter negativ auf die Wachstumsraten von O. marina aus. Stickstoff limitiertes Futter hat dagegen keine negativen Auswirkungen. Der Versuch dies anhand von unterschiedlichen Respirationsraten zu erklĂ€ren, klappt jedoch nicht, da O. marina in beiden FĂ€llen mehr respiriert, um den ĂŒberschĂŒssigen Kohlenstoff auszuscheiden. Deshalb scheint Phosphor der begrenzende Faktor zu sein, der schnell wachsende Einzeller limitiert. In wie weit O. marina abhĂ€ngig von seiner elementaren Ausstattung zwischen Stickstoff und Phosphor limitierendem Futter selektieren kann, wird mit Hilfe der Flow CAM in Kapitel V gezeigt. Die Ergebnisse zeigen jedoch keine Selektion, sondern nur unterschiedliche Aufnahmeraten abhĂ€ngig davon, was vorher gefressen wurde. Wenn O. marina allerdings das Futter nicht in einer Mischung erhĂ€lt, sondern einzeln, dann fressen sie signifikant mehr von dem Futter, das sie zuvor nicht bekommen haben. Das bedeutet, das O. marina sowohl den Mangel eines limitierenden Elementes in der eigenen Zelle, aber auch die NĂ€hrstoffzusammensetzung des Futters erkennt. Die Tatsache, dass O. marina aber auch weiterhin das Futter frisst, das zuvor schon gefressen wurde, zeigt, dass ZellvorgĂ€nge, die die Exkretion ĂŒberschĂŒssiger bzw. das ZurĂŒckhalten limitierender NĂ€hrstoffe bestimmen, entscheidender sind als die Selektion zwischen unterschiedlichen FutterqualitĂ€ten. Die vorliegende Arbeit soll dazu dienen, um einige wichtige Schwachpunkte der Flow CAM aufzuzeigen. Diese Schwachpunkte gilt es weiter auszuarbeiten, um sicherzustellen, dass die Flow CAM eventuell in Zukunft automatische ZĂ€hlaufgaben ĂŒbernehmen kann. Welche Rolle heterotrophe Protisten im marinen Nahrungsnetz spielen können und in wie weit sie von unterschiedlichen FutterqualitĂ€ten betroffen sind zeigen die hier durchgefĂŒhrten Experimente mit dem Modellorganismus O. marina. Weitere Untersuchungen sind notwendig um herauszufinden inwiefern sich diese Ergebnisse auf andere Protisten ĂŒbertragen lassen

    Phytoplankton and particle size spectra indicate intense mixotrophic dinoflagellates grazing from summer to winter

    Get PDF
    Abstract Mixotrophic dinoflagellates (MTD) are a diverse group of organisms often responsible for the formation of harmful algal blooms. However, the development of dinoflagellate blooms and their effects on the plankton community are still not well explored. Here we relate the species succession of MTD with parallel changes of phytoplankton size spectra during periods of MTD dominance. We used FlowCAM analysis to acquire size spectra in the range 2–200 Όm every one or two weeks from July to December 2007 at Helgoland Roads (Southern North Sea). Most size spectra of dinoflagellates were bimodal, whereas for other groups, e.g. diatoms and autotrophic flagellates, the spectra were unimodal, which indicates different resource use strategies of autotrophs and mixotrophs. The biomass lost in the size spectrum correlates with the potential grazing pressure of MTD. Based on size-based analysis of trophic linkages, we suggest that mixotrophy, including detritivory, drives species succession and facilitates the formation of bimodal size spectra. Bimodality in particular indicates niche differentiation through grazing of large MTD on smaller MTD. Phagotrophy of larger MTD may exceed one of the smaller MTD since larger prey was more abundant than smaller prey. Under strong light limitation, a usually overlooked refuge strategy may derive from detritivory. The critical role of trophic links of MTD as a central component of the plankton community may guide future observational and theoretical research.</jats:p

    Effects of salinity, temperature and nutrients on growth, cellular characteristics and yessotoxin production of Protoceratium reticulatum

    Get PDF
    Protoceratium reticulatum as a producer of yessotoxin (YTX) and its analogues is common in several coastal environments. The YTX-producing strain of P. reticulatum, isolated from the German Bight (North Sea), was analysed to study toxin production under various autecological conditions. Experiments were carried out to investigate the influence of N/P ratio (2.44 (1/10 N), 24.36 (f/2) and 243.65 (1/10 P)), temperature (15 and 20&#xa0;°C), salinity (5, 10, 15, 20, 25 and 30) and growth phase on YTX formation, cell size and chlorophyll a concentration. P. reticulatum showed the highest growth at 15&#xa0;°C and higher salinities (25 and 30). In particular, higher temperature led to a reduced growth. The total YTX concentrations were higher at lower temperature. However, a clear correlation between salinity and YTX production was not observed at lower temperature. Furthermore, 1/10 P and f/2 cultures exhibited the highest cell quota of YTX at the end of the stationary phase; a dramatic effect occurred at 15&#xa0;°C in 1/10 P media, when the toxicity increased to ten fold higher values. Slight variations of the composition of the YTX analogues under nutrient limitation were observable. In addition, the results indicate that N-limitation cause a lower cell size, whereas P-limitation leads to a higher cell size; an influence of the salinity on cell size was also observable

    The role of heterotrophic protists in the marine pelagic: impact of food quality on Oxyrrhis marina

    No full text
    Heterotrophic protists are important grazers on autotrophic components of the plankton and compete with higher trophic levels, especially copepods, for some of these food sources. Primary producers may be limited by different nutrient compounds as well as by light availability, which affect their nutritional quality for higher trophic levels. Food quality factors can be defined e.g. in terms of C:N:P- stoichiometry. Nutritionally limited algae can have significant negative effects on copepods growth and reproduction. Algae with high C:N:P- ratio as food particles result in a higher energy cost for the consumer, as they have to egest the ingested surplus carbon in order to maintain their homeostasis. Knowledge about food quality effects on heterotrophic protists is sparse. In the first step of our project we examined how nutrient limited Rhodomonas sp. affect the heterotrophic dinoflagellate Oxyrrhis marina

    (Supplement 4) Selective feeding of dinoflagellate in the Microscopy experiment

    No full text
    This dataset comprises data from two experiments analysed with two different tools, a FlowCam and a microscope. The heterotrophic dinoflagellate Oxyrrhis marina was subjected to different feeding treatments (starved, or fed with either F/2 nutrient reach, nitrogen-limited, or phosphorus-limited phytoplankton of the species Rhodomonas salina). The carbon:nitrogen:phosphorus stoichiometry of the different phytoplankton and dinoflagellate cultures was measured. The nitrogen-limited and phosphorus-limited phytoplankton were mixed and the mixture was offered as food to the dinoflagellates previously fed on either nitrogen-limited, or phosphorus-limited phytoplankton. The selective feeding of the dinoflagellate on the two mixed algal qualities was measured

    (Supplement 1) Phytoplankton and dinoflagellate stoichiometry in the FlowCam experiment

    No full text
    This dataset comprises data from two experiments analysed with two different tools, a FlowCam and a microscope. The heterotrophic dinoflagellate Oxyrrhis marina was subjected to different feeding treatments (starved, or fed with either F/2 nutrient reach, nitrogen-limited, or phosphorus-limited phytoplankton of the species Rhodomonas salina). The carbon:nitrogen:phosphorus stoichiometry of the different phytoplankton and dinoflagellate cultures was measured. The nitrogen-limited and phosphorus-limited phytoplankton were mixed and the mixture was offered as food to the dinoflagellates previously fed on either nitrogen-limited, or phosphorus-limited phytoplankton. The selective feeding of the dinoflagellate on the two mixed algal qualities was measured

    (Supplement 2) Phytoplankton and dinoflagellate stoichiometry in the Microscopy experiment

    No full text
    This dataset comprises data from two experiments analysed with two different tools, a FlowCam and a microscope. The heterotrophic dinoflagellate Oxyrrhis marina was subjected to different feeding treatments (starved, or fed with either F/2 nutrient reach, nitrogen-limited, or phosphorus-limited phytoplankton of the species Rhodomonas salina). The carbon:nitrogen:phosphorus stoichiometry of the different phytoplankton and dinoflagellate cultures was measured. The nitrogen-limited and phosphorus-limited phytoplankton were mixed and the mixture was offered as food to the dinoflagellates previously fed on either nitrogen-limited, or phosphorus-limited phytoplankton. The selective feeding of the dinoflagellate on the two mixed algal qualities was measured
    corecore