4 research outputs found

    Formic acid oxidation over hierarchical porous carbon containing PtPd catalysts

    Get PDF
    The use of high surface monolithic carbon as support for catalysts offers important advantage, such as elimination of the ohmic drop originated in the interparticle contact and improved mass transport by ad-hoc pore design. Moreover, the approach discussed here has the advantage that it allows the synthesis of materials having a multimodal porous size distribution, with each pore size contributing to the desired properties. On the other hand, the monolithic nature of the porous support also imposes new challenges for metal loading. In this work, the use of Hierarchical Porous Carbon (HPC) as support for PtPd nanoparticles was explored. Three hierarchical porous carbon samples (denoted as HPC-300, HPC-400 and HPC-500) with main pore size around 300, 400 and 500 nm respectively, are used as porous support. PtPd nanoparticles were loaded by impregnation and subsequent chemical reduction with NaBH4. The resulting material was characterized by EDX, XRD and conventional electrochemical techniques. The catalytic activity toward formic acid and methanol electrooxidation was evaluated by electrochemical methods, and the results compared with commercial carbon supported PtPd. The Hierarchical Porous Carbon support discussed here seems to be promising for use in DFAFC anodes.Fil: Baena Moncada, Angélica María. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morales, Gustavo Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Planes, Gabriel Angel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Florez Montano, Jonathan. Universidad de la Laguna; EspañaFil: Pastor, Elena. Universidad de la Laguna; Españ

    Strain Effects on the Oxidation of CO and HCOOH at Au-Pd Core-Shell Nanoparticles

    Get PDF
    The mechanism of CO and HCOOH electrooxidation in an acidic solution on carbon-supported Au–Pd core–shell nanoparticles was investigated by differential electrochemical mass spectrometry and in situ Fourier transform infrared (FTIR) spectroscopy. Analysis performed in nanostructures with 1.3 ± 0.1 nm (CS1) and 9.9 ± 1.1 nm (CS10) Pd shells provides compelling evidence that the mechanism of adsorbed CO (COads) oxidation is affected by structural and electronic effects introduced by the Au cores. In the case of CS10, a band associated with adsorbed OH species (OHads) is observed in the potential range of CO oxidation. This feature is not detected in the case of CS1, suggesting that the reaction follows an alternative mechanism involving COOHads species. The faradaic charge associated with COads oxidation as well as the Stark slope measured from FTIR indicates that the overall affinity and orbital coupling of CO to Pd are weaker for CS1 shells. FTIR spectroscopy also revealed the presence of HCOOads intermediate species only in the case of CS1. This observation allowed us to conclude that the higher activity of CS10 toward this reaction is due to a fast HCOOads oxidation step, probably involving OHads, to generate CO2. Density functional theory calculations are used to estimate the contributions of the so-called ligand and strain effects on the local density of states of the Pd d-band. The calculations strongly suggest that the key parameter contributing to the change in mechanism is the effective lattice strain

    Tuning CO2 electroreduction efficiency at Pd shells on Au nanocores

    Get PDF
    The faradaic efficiency of CO2 electroreduction is significantly affected by the thickness of Pd nanoshells on Au cores. The ratio of hydrogen evolution to CO2 reduction was determined by differential electrochemical mass spectrometry. Decreasing the Pd shell thickness from 10 to 1 nm leads to a twofold increase in faradaic efficiency
    corecore