910 research outputs found
Effects of Random Link Removal on the Photonic Band Gaps of Honeycomb Networks
We explore the effects of random link removal on the photonic band gaps of
honeycomb networks. Missing or incomplete links are expected to be common in
practical realizations of this class of connected network structures due to
unavoidable flaws in the fabrication process. We focus on the collapse of the
photonic band gap due to the defects induced by the link removal. We show that
the photonic band gap is quite robust against this type of random decimation
and survives even when almost 58% of the network links are removed
Triplet-Singlet Spin Relaxation in Quantum Dots with Spin-Orbit Coupling
We estimate the triplet-singlet relaxation rate due to spin-orbit coupling
assisted by phonon emission in weakly-confined quantum dots. Our results for
two and four electrons show that the different triplet-singlet relaxation
trends observed in recent experiments under magnetic fields can be understood
within a unified theoretical description, as the result of the competition
between spin-orbit coupling and phonon emission efficiency. Moreover, we show
that both effects are greatly affected by the strength of the confinement and
the external magnetic field, which may give access to very long-lived triplet
states as well as to selective population of the triplet Zeeman sublevels.Comment: 5 pages, 3 figures. Closely related to recent experiments in
cond-mat/060972
Inversion formulas for the broken-ray Radon transform
We consider the inverse problem of the broken ray transform (sometimes also
referred to as the V-line transform). Explicit image reconstruction formulas
are derived and tested numerically. The obtained formulas are generalizations
of the filtered backprojection formula of the conventional Radon transform. The
advantages of the broken ray transform include the possibility to reconstruct
the absorption and the scattering coefficients of the medium simultaneously and
the possibility to utilize scattered radiation which, in the case of the
conventional X-ray tomography, is typically discarded.Comment: To be submitted to Inverse Problem
Phonon-induced electron relaxation in weakly-confined single and coupled quantum dots
We investigate charge relaxation rates due to acoustic phonons in
weakly-confined quantum dot systems, including both deformation potential and
piezoelectric field interactions. Single-electron excited states lifetimes are
calculated for single and coupled quantum dot structures, both in homonuclear
and heteronuclear devices. Piezoelectric field scattering is shown to be the
dominant relaxation mechanism in many experimentally relevant situations. On
the other hand, we show that appropriate structure design allows to minimize
separately deformation potential and piezolectric field interactions, and may
bring electron lifetimes in the range of microseconds.Comment: 20 pages (preprint format), 7 figures, submitted to Physical Review
Effect of electron-electron interaction on the phonon-mediated spin relaxation in quantum dots
We estimate the spin relaxation rate due to spin-orbit coupling and acoustic
phonon scattering in weakly-confined quantum dots with up to five interacting
electrons. The Full Configuration Interaction approach is used to account for
the inter-electron repulsion, and Rashba and Dresselhaus spin-orbit couplings
are exactly diagonalized. We show that electron-electron interaction strongly
affects spin-orbit admixture in the sample. Consequently, relaxation rates
strongly depend on the number of carriers confined in the dot. We identify the
mechanisms which may lead to improved spin stability in few electron (>2)
quantum dots as compared to the usual one and two electron devices. Finally, we
discuss recent experiments on triplet-singlet transitions in GaAs dots subject
to external magnetic fields. Our simulations are in good agreement with the
experimental findings, and support the interpretation of the observed spin
relaxation as being due to spin-orbit coupling assisted by acoustic phonon
emission.Comment: 12 pages, 10 figures. Revised version. Changes in section V
(simulation of PRL 98, 126601 experiment
Large scale chromosome folding Is stable against local changes in chromatin structure
Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 10(5) basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes. © 2016 Florescu et al
A distributed control for a grasping function of a hyperredundant arm
The paper focuses on the control problem of a tentacle robot that performs the coil function of grasping. First, the dynamic model of a hyperredundant arm with continuum elements produced by flexible composite materials in conjunction with active-controllable electro-rheological fluids is analyzed. Secondly, both problems, i.e. the position control and the force control are approached. The difficulties determined by the complexity of the non-linear integraldifferential equations are avoided by using a basic energy relationship of this system. Energy-based control laws are introduced for the position control problem. A force control method is proposed, namely the DSMC method in which the evolution of the system on the switching line by the ER fluid viscosity is controlled. Numerical simulations are also presente
Stability control of a hyperredundant arm for a grasping operation
In this paper a problem of a class of hyperredundant arms with continuum elements that perform the grasping function by coiling is discussed. This function is often met in the animal world as in the case of elephant trunk or octopus tentacle. First, the dynamic model in 3D-space is developed. The equations that describe the motion of the arm that carries a load by coiling are inferred. The stability of the motion is discussed. Numerical simulations of the motion towards an imposed target are presente
Thermal emission from finite photonic crystals
We present a microscopic theory of thermal emission from finite-sized photonic crystals and show that the directional spectral emissivity and related quantities can be evaluated via standard bandstructure computations without any approximation. We then identify the physical mechanisms through which interfaces modify the potentially super-Planckian radiation flow inside infinite photonic crystals, such that thermal emission from finite-sized samples is consistent with the fundamental limits set by Planck's law. As an application, we further demonstrate that a judicious choice of a photonic crystal's surface termination facilitates considerable control over both the spectral and angular thermal emission properties. © 2009 American Institute of Physics
Description of non-specific DNA-protein interaction and facilitated diffusion with a dynamical model
We propose a dynamical model for non-specific DNA-protein interaction, which
is based on the 'bead-spring' model previously developed by other groups, and
investigate its properties using Brownian Dynamics simulations. We show that
the model successfully reproduces some of the observed properties of real
systems and predictions of kinetic models. For example, sampling of the DNA
sequence by the protein proceeds via a succession of 3d motion in the solvent,
1d sliding along the sequence, short hops between neighboring sites, and
intersegmental transfers. Moreover, facilitated diffusion takes place in a
certain range of values of the protein effective charge, that is, the
combination of 1d sliding and 3d motion leads to faster DNA sampling than pure
3d motion. At last, the number of base pairs visited during a sliding event is
comparable to the values deduced from single-molecule experiments. We also
point out and discuss some discrepancies between the predictions of this model
and some recent experimental results as well as some hypotheses and predictions
of kinetic models
- …