91 research outputs found

    SOCS proteins in regulation of receptor tyrosine kinase signaling.

    Get PDF
    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment. The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar proteins, SOCS1-7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also evident that RTKs can sometimes bypass SOCS regulation and SOCS proteins can even potentiate RTKs-mediated mitogenic signaling. Thus, apart from negative regulation of receptor signaling, SOCS proteins may also influence signaling in other ways

    SOCS2 (suppressor of cytokine signaling 2)

    Get PDF
    Review on SOCS2, with data on DNA, on the protein encoded, and where the gene is implicated

    Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    Get PDF
    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic development, adulthood, and aging. GHR belongs to a family of receptors without intrinsic kinase activity. However, GH binding to homodimers of GHR results in a conformational change in the receptors and the associated tyrosine kinase Janus kinase 2 (JAK2) molecules. Activated JAK2 phosphorylates the GHR cytoplasmic domain on tyrosine residues, and subsequent JAK2-dependent and JAK2-independent intracellular signal transduction pathways evoke cell responses including changes in gene transcription, proliferation, cytoskeletal reorganization, and lipid and glucose metabolism. JAK2 phosphorylates STAT5b, which is a key transcription factor in GH regulation of target genes associated with body growth, intermediate metabolism, and gender dimorphism; although STAT1, 3, and 5a have also been shown to be recruited by the GHR. In addition, many transcripts are regulated independently of STAT5b as a result of GHR activation of Src, ERK, and PI3K-mTOR signaling pathways. The analysis of molecular mechanisms involved in inactivation of GHR-dependent signaling pathway is also imperative for understanding GH physiology. This is clearly illustrated in the case of hepatic GHR-JAK2-STAT5b activation where signal duration regulates gender differences in liver gene expression. An early step in the termination of GH-dependent signaling is removal of GHRs by endocytosis and ubiquitination. The level of ubiquitin ligase SOCS2 is constitutively low, but its expression is rapidly induced by GH. SOCS2 binding to GHR complex promotes their ubiquitination and subsequent proteasomal degradation, contributing to the termination of the GH intracellular signaling. Clinically relevant, SOCS2 is a key negative regulator of GH-dependent body growth and lipid and glucose homeostasis. Furthermore, several cytokines, growth factors, xenobiotics, and sex hormones can regulate SOCS2 protein level, which provides a mechanism for cross-talking where multiple factors can regulate GHR signaling during somatic development. A better understanding of this complex regulation in physiological and pathological states will contribute to prevent health damage and improve clinical management of patients with growth and metabolic disorders

    Exploring hepatic hormone actions using a compilation of gene expression profiles

    Get PDF
    BACKGROUND: Microarray analysis is attractive within the field of endocrine research because regulation of gene expression is a key mechanism whereby hormones exert their actions. Knowledge discovery and testing of hypothesis based on information-rich expression profiles promise to accelerate discovery of physiologically relevant hormonal mechanisms of action. However, most studies so-far concentrate on the analysis of actions of single hormones and few examples exist that attempt to use compilation of different hormone-regulated expression profiles to gain insight into how hormone act to regulate tissue physiology. This report illustrates how a meta-analysis of multiple transcript profiles obtained from a single tissue, the liver, can be used to evaluate relevant hypothesis and discover novel mechanisms of hormonal action. We have evaluated the differential effects of Growth Hormone (GH) and estrogen in the regulation of hepatic gender differentiated gene expression as well as the involvement of sterol regulatory element-binding proteins (SREBPs) in the hepatic actions of GH and thyroid hormone. RESULTS: Little similarity exists between liver transcript profiles regulated by 17-α-ethinylestradiol and those induced by the continuos infusion of bGH. On the other hand, strong correlations were found between both profiles and the female enriched transcript profile. Therefore, estrogens have feminizing effects in male rat liver which are different from those induced by GH. The similarity between bGH and T3 were limited to a small group of genes, most of which are involved in lipogenesis. An in silico promoter analysis of genes rapidly regulated by thyroid hormone predicted the activation of SREBPs by short-term treatment in vivo. It was further demonstrated that proteolytic processing of SREBP1 in the endoplasmic reticulum might contribute to the rapid actions of T3 on these genes. CONCLUSION: This report illustrates how a meta-analysis of multiple transcript profiles can be used to link knowledge concerning endocrine physiology to hormonally induced changes in gene expression. We conclude that both GH and estrogen are important determinants of gender-related differences in hepatic gene expression. Rapid hepatic thyroid hormone effects affect genes involved in lipogenesis possibly through the induction of SREBP1 proteolytic processing

    The ubiquitin ligase Cullin5<sup>SOCS2</sup> regulates NDR1/STK38 stability and NF-κB transactivation

    No full text
    SOCS2 is a pleiotropic E3 ligase. Its deficiency is associated with gigantism and organismal lethality upon inflammatory challenge. However, mechanistic understanding of SOCS2 function is dismal due to our unawareness of its protein substrates. We performed a mass spectrometry based proteomic profiling upon SOCS2 depletion and yield quantitative data for ~4200 proteins. Through this screen we identify a novel target of SOCS2, the serine-threonine kinase NDR1. Over-expression of SOCS2 accelerates turnover, while its knockdown stabilizes, endogenous NDR1 protein. SOCS2 interacts with NDR1 and promotes its degradation through K48-linked ubiquitination. Functionally, over-expression of SOCS2 antagonizes NDR1-induced TNFα-stimulated NF-κB activity. Conversely, depletion of NDR1 rescues the effect of SOCS2-deficiency on TNFα-induced NF-κB transactivation. Using a SOCS2(−/−) mice model of colitis we show that SOCS2-deficiency is pro-inflammatory and negatively correlates with NDR1 and nuclear p65 levels. Lastly, we provide evidence to suggest that NDR1 acts as an oncogene in prostate cancer. To the best of our knowledge, this is the first report of an identified E3 ligase for NDR1. These results might explain how SOCS2-deficiency leads to hyper-activation of NF-κB and downstream pathological implications and posits that SOCS2 induced degradation of NDR1 may act as a switch in restricting TNFα-NF-κB pathway

    Novel potent liposome agonists of triggering receptor expressed on myeloid cells 2 phenocopy antibody treatment in cells

    Get PDF
    The receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold. However, there has been much discrepancy in the literature on the nature of phospholipids (PLs) that can activate TREM2 and on the stability of the corresponding liposomes over time. We describe optimized liposomes as robust agonists selective for TREM2 over TREM1 in cellular system. The detailed structure/activity relationship studies of lipid polar heads indicate that negatively charged lipid heads are required for activity and we identified the shortest maximally active PL sidechain. Optimized liposomes are active on both TREM2 common variant and TREM2 R47H mutant. Activity and selectivity were further confirmed in different native TREM2 expressing cell types including on integrated cellular responses such as stimulation of phagocytic activity. Such tool agonists will be useful in further studies of TREM2 biology in cellular systems alongside antibodies, and in the design of small molecule synthetic TREM2 agonists
    corecore