14 research outputs found

    Pulmonary vein flow split effects in patient-specific simulations of left atrial flow

    Get PDF
    Disruptions to left atrial (LA) blood flow, such as those caused by atrial fibrillation (AF), can lead to thrombosis in the left atrial appendage (LAA) and an increased risk of systemic embolism. LA hemodynamics are influenced by various factors, including LA anatomy and function, and pulmonary vein (PV) inflow conditions. In particular, the PV flow split can vary significantly among and within patients depending on multiple factors. In this study, we investigated how changes in PV flow split affect LA flow transport, focusing for the first time on blood stasis in the LAA, using a high-fidelity patient-specific computational fluid dynamics (CFD) model. We use an Immersed Boundary Method, simulating the flow in a fixed, uniform Cartesian mesh and imposing the movement of the LA walls with a moving Lagrangian mesh generated from 4D Computerized Tomography images. We analyzed LA anatomies from eight patients with varying atrial function, including three with AF and either a LAA thrombus or a history of Transient Ischemic Attacks (TIAs). Using four different flow splits (60/40% and 55/45% through right and left PVs, even flow rate, and same velocity through each PV), we found that flow patterns are sensitive to PV flow split variations, particularly in planes parallel to the mitral valve. Changes in PV flow split also had a significant impact on blood stasis and could contribute to increased risk for thrombosis inside the LAA, particularly in patients with AF and previous LAA thrombus or a history of TIAs. Our study highlights the importance of considering patient-specific PV flow split variations when assessing LA hemodynamics and identifying patients at increased risk for thrombosis and stroke. This knowledge is relevant to planning clinical procedures such as AF ablation or the implementation of LAA occluders.This work was partially supported by Comunidad de Madrid (Synergy Grant Y2018/BIO-4858 PREFI-CM), Spanish Research Agency (AEI, grant number PID2019-107279RB-I00), Instituto de Salud Carlos III (grant numbers PI15/02211-ISBITAMI and DTS/1900063-ISBIFLOW), and by the EU-European Regional Development Fund. Funding for open access charge: Universidad de Málaga /CBU

    Blood stasis imaging predicts cerebral microembolism during acute myocardial infarction

    Get PDF
    Background: Cardioembolic stroke is a major source of mortality and disability worldwide. The authors hypothesized that quantitative characterization of intracardiac blood stasis may be useful to determine cardioembolic risk in order to personalize anticoagulation therapy. The aim of this study was to assess the relationship between image-based metrics of blood stasis in the left ventricle and brain microembolism, a surrogate marker of cardiac embolism, in a controlled animal experimental model of acute myocardial infarction (AMI). -- Methods: Intraventricular blood stasis maps were derived from conventional color Doppler echocardiography in 10 pigs during anterior AMI induced by sequential ligation of the mid and proximal left anterior descending coronary artery (AMI-1 and AMI-2 phases). From these maps, indices of global and local blood stasis were calculated, such as the average residence time and the size and ratio of contact with the endocardium of blood regions with long residence times. The incidence of brain microemboli (high-intensity transient signals [HITS]) was monitored using carotid Doppler ultrasound. -- Results: HITS were detected in 0%, 50%, and 90% of the animals at baseline and during AMI-1 and AMI-2 phases, respectively. The average residence time of blood in the left ventricle increased in parallel. The residence time performed well to predict microemboli (C-index = 0.89, 95% CI, 0.75–1.00) and closely correlated with the number of HITS (R = 0.87, P < .001). Multivariate and mediation analyses demonstrated that the number of HITS during AMI phases was best explained by stasis. Among conventional echocardiographic variables, only apical wall motion score weakly correlated with the number of HITS (R = 0.3, P = .04). Mural thrombosis in the left ventricle was ruled out in all animals. -- Conclusions: The degree of stasis of blood in the left ventricle caused by AMI is closely related to the incidence of brain microembolism. Therefore, stasis imaging is a promising tool for a patient-specific assessment of cardioembolic risk.This study was supported by grant PI15/02211, Rio Hortega (CM17/00144), and Juan Rodés fellowships (JR15/00039) from Instituto de Salud Carlos III; grant DPI2016-75706-P and a Juan de la Cierva fellowship (IJCI-2014-19507) from Ministerio de Economía y Competitividad; synergy grant Y2018/BIO-4858-PREFI-CM from Comunidad Autónoma de Madrid; the European Union - European Regional Development Fund; by the Spanish Society of Cardiology (ISBI-DCM); by the University of California,San Diego, CTRI Galvanizing Engineering and Medicine Program; American Heart Association grant 16GRNT27250262; and National Institutes of Health UC CAI grant CII4560. P.M.-L. was also funded by CIBERCV. P.M.-L., L.R., J.C.A., and J.B. are inventors of a method for quantifying intracardiac stasis from imaging data under a Patent Cooperation Treaty patent application (WO2017091746A1)

    EFECTO DE LA TEMPERATURA EN LA TASA DE CRECIMIENTO Y DECAIMIENTO HETEROTRÓFICO EN EL RANGO DE 20-32° C EN UN PROCESO DE LODOS ACTIVADOS

    No full text
    "El modelo ASM1 es aceptado como referencia para predecir y comprender los procesos de degradación de materia orgánica, nitrificación y desnitrificación en sistemas de lodos activados. Para calibrar el modelo, se requiere estimar parámetros cinéticos tal
    corecore