7 research outputs found
The two gap transitions in GeSn: effect of non-substitutional complex defects
The existence of non-substitutional -Sn defects in GeSn
was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B
81, 155204 (2010)], which established that although most Sn enters
substitutionally (-Sn) in the Ge lattice, a second significant fraction
corresponds to the Sn-vacancy defect complex in the split-vacancy configuration
( -Sn ), in agreement with our previous theoretical study [Ventura et
al., Phys. Rev. B 79, 155202 (2009)]. Here, we present our electronic structure
calculation for GeSn, including substitutional -Sn as
well as non-substitutional -Sn defects. To include the presence of
non-substitutional complex defects in the electronic structure calculation for
this multi-orbital alloy problem, we extended the approach for the purely
substitutional alloy by Jenkins and Dow [Jenkins and Dow, Phys. Rev. B 36, 7994
(1987)]. We employed an effective substitutional two-site cluster equivalent to
the real non-substitutional -Sn defect, which was determined by a
Green's functions calculation. We then calculated the electronic structure of
the effective alloy purely in terms of substitutional defects, embedding the
effective substitutional clusters in the lattice. Our results describe the two
transitions of the fundamental gap of GeSn as a function of the
total Sn-concentration: namely from an indirect to a direct gap, first, and the
metallization transition at higher . They also highlight the role of
-Sn in the reduction of the concentration range which corresponds to the
direct-gap phase of this alloy, of interest for optoelectronics applications.Comment: 11 pages, 9 Figure
Normal state electronic properties of LaOFBiS superconductors
A good description of the electronic structure of BiS-based
superconductors is essential to understand their phase diagram, normal state
and superconducting properties. To describe the first reports of normal state
electronic structure features from angle resolved photoemission spectroscopy
(ARPES) in LaOFBiS, we used a minimal microscopic model to
study their low energy properties. It includes the two effective tight-binding
bands proposed by Usui et al [Phys.Rev.B 86, 220501(R)(2012)], and we added
moderate intra- and inter-orbital electron correlations related to Bi-(,
) and S-(, ) orbitals. We calculated the electron Green's
functions using their equations of motion, which we decoupled in second-order
of perturbations on the correlations. We determined the normal state spectral
density function and total density of states for LaOFBiS,
focusing on the description of the k-dependence, effect of doping, and the
prediction of the temperature dependence of spectral properties. Including
moderate electron correlations, improves the description of the few
experimental ARPES and soft X-ray photoemission data available for
LaOFBiS. Our analytical approximation enabled us to
calculate the spectral density around the conduction band minimum at
, and to predict the temperature dependence of
the spectral properties at different BZ points, which might be verified by
temperature dependent ARPES.Comment: 9 figures. Manuscript accepted in Physica B: Condensed Matter on Jan.
25, 201
Temperature and doping dependence of normal state spectral properties in a two-orbital model for ferropnictides
Using a second-order perturbative Green's functions approach we determined
the normal state single-particle spectral function
employing a minimal effective model for iron-based superconductors. The
microscopic model, used before to study magnetic fluctuations and
superconducting properties, includes the two effective tight-binding bands
proposed by S.Raghu et al. [Phys. Rev. B 77, 220503 (R) (2008)], and intra- and
inter-orbital local electronic correlations, related to the Fe-3d orbitals.
Here, we focus on the study of normal state electronic properties, in
particular the temperature and doping dependence of the total density of
states, , and of in different Brillouin zone
regions, and compare them to the existing angle resolved photoemission
spectroscopy (ARPES) and previous theoretical results in ferropnictides. We
obtain an asymmetric effect of electron and hole doping, quantitative agreement
with the experimental chemical potential shifts as a function of doping, as
well as spectral weight redistributions near the Fermi level as a function of
temperature consistent with the available experimental data. In addition, we
predict a non-trivial dependence of the total density of states with the
temperature, exhibiting clear renormalization effects by correlations.
Interestingly, investigating the origin of this predicted behaviour by
analyzing the evolution with temperature of the k-dependent self-energy
obtained in our approach, we could identify a number of specific Brillouin zone
points, none of them probed by ARPES experiments yet, where the largest
non-trivial effects of temperature on the renormalization are present.Comment: Manuscript accepted in Physics Letters A on Feb. 25, 201
Normal state magnetotransport properties of -FeSe superconductors
We present -FeSe magnetotransport data, and describe them
theoretically. Using a simplified microscopic model with two correlated
effective orbitals, we determined the normal state electrical conductivity and
Hall coefficient, using Kubo formalism. With model parameters relevant for
Fe-chalcogenides, we describe the observed effect of the structural transition
on the ab-plane electrical resistivity, as well as on the magnetoresistance.
Temperature-dependent Hall coefficient data were measured at 16 Tesla, and
their theoretical description improves upon inclusion of moderate electron
correlations. We confirm the effect of the structural transition on the
electronic structure, finding deformation-induced band splittings comparable to
those reported in angle-resolved photoemission.Comment: 6 pages, 5 figure