3,670 research outputs found
Monitoring edge-geodetic sets in graphs
We introduce a new graph-theoretic concept in the area of network monitoring.
In this area, one wishes to monitor the vertices and/or the edges of a network
(viewed as a graph) in order to detect and prevent failures. Inspired by two
notions studied in the literature (edge-geodetic sets and
distance-edge-monitoring sets), we define the notion of a monitoring
edge-geodetic set (MEG-set for short) of a graph as an edge-geodetic set
of (that is, every edge of lies on some shortest path
between two vertices of ) with the additional property that for every edge
of , there is a vertex pair of such that lies on
\emph{all} shortest paths between and . The motivation is that, if some
edge is removed from the network (for example if it ceases to function),
the monitoring probes and will detect the failure since the distance
between them will increase.
We explore the notion of MEG-sets by deriving the minimum size of a MEG-set
for some basic graph classes (trees, cycles, unicyclic graphs, complete graphs,
grids, hypercubes,...) and we prove an upper bound using the feedback edge set
of the graph
Active and driven hydrodynamic crystals
Motivated by the experimental ability to produce monodisperse particles in
microfluidic devices, we study theoretically the hydrodynamic stability of
driven and active crystals. We first recall the theoretical tools allowing to
quantify the dynamics of elongated particles in a confined fluid. In this
regime hydrodynamic interactions between particles arise from a superposition
of potential dipolar singularities. We exploit this feature to derive the
equations of motion for the particle positions and orientations. After showing
that all five planar Bravais lattices are stationary solutions of the equations
of motion, we consider separately the case where the particles are passively
driven by an external force, and the situation where they are self-propelling.
We first demonstrate that phonon modes propagate in driven crystals, which are
always marginally stable. The spatial structure of the eigenmodes depend solely
on the symmetries of the lattices, and on the orientation of the driving force.
For active crystals, the stability of the particle positions and orientations
depends not only on the symmetry of the crystals but also on the perturbation
wavelengths and on the crystal density. Unlike unconfined fluids, the stability
of active crystals is independent of the nature of the propulsion mechanism at
the single particle level. The square and rectangular lattices are found to be
linearly unstable at short wavelengths provided the volume fraction of the
crystals is high enough. Differently, hexagonal, oblique, and face-centered
crystals are always unstable. Our work provides a theoretical basis for future
experimental work on flowing microfluidic crystals.Comment: 10 pages, 10 figure
Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups
In this paper, we construct a Lagrangian submanifold of the moduli space
associated to the fundamental group of a punctured Riemann surface (the space
of representations of this fundamental group into a compact connected Lie
group). This Lagrangian submanifold is obtained as the fixed-point set of an
anti-symplectic involution defined on the moduli space. The notion of
decomposable representation provides a geometric interpretation of this
Lagrangian submanifold
The mass-to-light ratio of rich star clusters
We point out a strong time-evolution of the mass-to-light conversion factor
eta commonly used to estimate masses of unresolved star clusters from observed
cluster spectro-photometric measures. We present a series of gas-dynamical
models coupled with the Cambridge stellar evolution tracks to compute
line-of-sight velocity dispersions and half-light radii weighted by the
luminosity. We explore a range of initial conditions, varying in turn the
cluster mass and/or density, and the stellar population's IMF. We find that
eta, and hence the estimated cluster mass, may increase by factors as large as
3 over time-scales of 50 million years. We apply these results to an hypothetic
cluster mass distribution function (d.f.) and show that the d.f. shape may be
strongly affected at the low-mass end by this effect. Fitting truncated
isothermal (Michie-King) models to the projected light profile leads to
over-estimates of the concentration parameter c of delta c ~ 0.3 compared to
the same functional fit applied to the projected mass density.Comment: 6 pages, 2 figures, to appear in the proceedings of the "Young
massive star clusters", Granada, Spain, September 200
Toward Forecasting Volcanic Eruptions using Seismic Noise
During inter-eruption periods, magma pressurization yields subtle changes of
the elastic properties of volcanic edifices. We use the reproducibility
properties of the ambient seismic noise recorded on the Piton de la Fournaise
volcano to measure relative seismic velocity variations of less than 0.1 % with
a temporal resolution of one day. Our results show that five studied volcanic
eruptions were preceded by clearly detectable seismic velocity decreases within
the zone of magma injection. These precursors reflect the edifice dilatation
induced by magma pressurization and can be useful indicators to improve the
forecasting of volcanic eruptions.Comment: Supplementary information:
http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguier_SI.pdf Supplementary
video:
http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguierMovieVolcano.av
Exploring the decision-making process in model development: focus on the Arctic snowpack
The Arctic poses many challenges to Earth System and snow physics models, which are unable to simulate crucial Arctic snowpack processes, such as vapour gradients and rain-on-snow-induced ice layers. These limitations raise concerns about the current understanding of Arctic warming and its impact on biodiversity, livelihoods, permafrost and the global carbon budget. Recognizing that models are shaped by human choices, eighteen Arctic researchers were interviewed to delve into the decision-making process behind model construction. Although data availability, issues of scale, internal model consistency, and historical and numerical model legacies were cited as obstacles to developing an Arctic snowpack model, no opinion was unanimous. Divergences were not merely scientific disagreements about the Arctic snowpack, but reflected the broader research context. Inadequate and insufficient resources partly driven by short-term priorities dominating research landscapes, impeded progress. Nevertheless, modellers were found to be both adaptable to shifting strategic research priorities â an adaptability demonstrated by the fact that interdisciplinary collaborations were the key motivation for model development â and anchored in the past. This anchoring led to diverging opinions about whether existing models are âgood enoughâ and whether investing time and effort to build a new model was a useful strategy when addressing pressing research challenges. Moving forward, we recommend that both stakeholders and modellers be involved in future snow model intercomparison projects in order to drive developments that address snow model limitations that currently impede progress in various disciplines. We also argue for more transparency about the contextual factors that shape research decisions. Otherwise, the reality of our scientific process will remain hidden, limiting the changes necessary to our research practice
CGILS: Results From The First Phase of An International Project to Understand The Physical Mechanisms of Low Cloud Feedbacks in Single Column Models
CGILSâthe CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)âinvestigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the âNESTSâ negative cloud feedback and the âSCOPEâ positive cloud feedback (Negative feedback from Surface Turbulence under weaker SubsidenceâShallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations
- âŠ