2 research outputs found

    A first insight into stress-induced neuroendocrine and immune changes in the octopus

    No full text
    A number of cephalopod species present substantial ecological and economical importance; however, data on the physiology of stress and on regulatory processes linking stress to immune defence against pathogens remain extremely scarce in these organisms. The present study examined the influence of a 5 min air exposure, a common perturbation associated with handling in aquaculture settings and fisheries, on neuroendocrine and immune parameters in the octopus Eledone cirrhosa. Measurements of circulating concentrations of noradrenaline and dopamine, two hormones that are released in the haemolymph during stress in bivalves and gastropods, showed that the 5 min air exposure represents a real stress to octopus. Indeed, blood levels of both hormones increased by about 2–2.5-fold in stressed animals. Concomitantly, a significant decrease in the number of circulating haemocytes was observed, whereas haemocyte phagocytotic activity and superoxide anion production increased transiently between 5 and 60 min after the beginning of the stress. These results provide a first insight into the effects of stress on catecholamine levels and immune functions in cephalopods and suggest that stress and immunity may be associated in these organisms

    Stabilization of β-catenin upon B-cell receptor signaling promotes NF-kB target genes transcription in mantle cell lymphoma

    No full text
    International audienceB-cell receptor (BCR) signaling pathways and interactions with the tumor microenvironment account for mantle cell lymphoma (MCL) cells survival in lymphoid organs. In several MCL cases, the WNT/β-catenin canonical pathway is activated and β-catenin accumulates into the nucleus. As both BCR and β-catenin are important mediators of cell survival and interaction with the microenvironment, we investigated the crosstalk between BCR and WNT/β-catenin signaling and analyzed their impact on cellular homeostasis as well as their targeting by specific inhibitors. β-catenin was detected in all leukemic MCL samples and its level of expression rapidly increased upon BCR stimulation. This stabilization was hampered by the BCR-pathway inhibitor Ibrutinib, supporting β-catenin as an effector of the BCR signaling. In parallel, MCL cells as compared with normal B cells expressed elevated levels of WNT16, a NF-κB target gene. Its expression increased further upon BCR stimulation to participate to the stabilization of β-catenin. Upon BCR stimulation, β-catenin translocated into the nucleus but did not induce a Wnt-like transcriptional response, i.e., TCF/LEF dependent. β-catenin rather participated to the regulation of NF-κB transcriptional targets, such as IL6, IL8, and IL1. Oligo pull down and chromatin immunoprecipitation experiments demonstrated that β-catenin is part of a protein complex that binds the NF-κB DNA consensus sequence, strengthening the idea of an association between the two proteins. An inhibitor targeting β-catenin transcriptional interactions hindered both NF-κB DNA recruitment and induced primary MCL cells apoptosis. Thus, β-catenin likely represents another player through which BCR signaling impacts on MCL cell survival
    corecore