19 research outputs found

    The Cellular Prion Protein Interacts with the Tissue Non-Specific Alkaline Phosphatase in Membrane Microdomains of Bioaminergic Neuronal Cells

    Get PDF
    BACKGROUND: The cellular prion protein, PrP(C), is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C) in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C) acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C), we have described a neuronal specificity pointing to a role of PrP(C) in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT)) or noradrenergic (1C11(NE)) derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C) signaling prompted us to search for PrP(C) partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C) with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP). This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT) and 1C11(NE) cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT) and 1C11(NE) bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C) partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C) and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C)-laminin interplay. The partnership between TNAP and PrP(C) in neuronal cells may provide new clues as to the neurospecificity of PrP(C) function

    The Modulation of the Cell-Cycle: A Sentinel to Alert the NK Cells of Dangers

    Get PDF
    International audienceNatural killer (NK) cells are an essential component of innate immunity that provides a rapid response to detect stressed, infected, or transformed target cells.This system is controlled by a balance of inhibitory and activating signals transmitted by a myriad of receptors and their specific ligands. Inhibitory receptors mainly recognize self-MHC class-I molecules, whereas activating receptors, such as natural cytotoxic receptors, NKG2D, and DNAM-1, interact with self-proteins, normally not expressed on the cell surface of healthy cells, but up-regulated by cellular stress or infections and are frequently expressed on tumor cells. In these circumstances, regulatory controls ensure that specific ligands are induced mainly in diseased cells and not in normal cells. Each ligand seems to exhibit some distinct specializations providing broad " coverage " for numerous stresses associated with various diseases. Deregulated cell proliferation is a hallmark of these abnormal situations, and may serve as a sentinel for the elimination of the targets by NK cells. The purpose of this review is to discuss recent implications of cell-cycle to create a warning control system that relays various danger signals via specific ligands to the NK receptor system

    TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells

    No full text
    International audienceThe tissue non-specific alkaline phosphatase (TNAP) is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein which exists under different forms and is expressed in different tissues. As the other members of the ecto-phosphatase family, TNAP is targeted to membrane lipid rafts. Such micro domains enriched in particular lipids, are involved in cell sorting, are in close contact with the cellular cytoskeleton and play the role of signaling platform. In addition to its location in functional domains, the extracellular orientation of TNAP and the fact this glycoprotein can be shed from plasma membranes, contribute to its different phosphatase activities by acting as a phosphomonoesterase on various soluble substrates (inorganic pyrophosphate -PPi-, pyridoxal phosphate -PLP-, phosphoethanolamine -PEA-), as an ectonucleotidase on nucleotide-phosphate and presumably as a phosphatase able to dephosphorylate phosphoproteins and phospholipids associated to cells or to extra cellular matrix. More and more data accumulate on an involvement of the brain TNAP both in physiological and pathological situations. This review will summarize what is known and expected from the TNAP localization in lipid rafts with a particular emphasis on the role of a neuronal microenvironment on its potential function in the central nervous system

    What Do We Know about How Hantaviruses Interact with Their Different Hosts?

    No full text
    Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes

    A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells.

    No full text
    International audienceAspergillus fumigatus is an opportunistic human fungal pathogen that sheds galactosaminogalactan (GG) into the environment. Polymorphonuclear neutrophils (PMNs) and NK cells are both part of the first line of defense against pathogens. We recently reported that GG induces PMN apoptosis. In this study, we show that PMN apoptosis occurs via a new NK cell-dependent mechanism. Reactive oxygen species, induced by the presence of GG, play an indispensable role in this apoptotic effect by increasing MHC class I chain-related molecule A expression at the PMN surface. This increased expression enables interaction between MHC class I chain-related molecule A and NKG2D, leading to NK cell activation, which in turn generates a Fas-dependent apoptosis-promoting signal in PMNs. Taken together, our results demonstrate that the crosstalk between PMNs and NK cells is essential to GG-induced PMN apoptosis. NK cells might thus play a role in the induction of PMN apoptosis in situations such as unexplained neutropenia or autoimmune diseases

    Constitutive expression of ligand for natural killer cell NKp44 receptor (NKp44L) by normal human articular chondrocytes

    No full text
    International audienceNormal chondrocytes display susceptibility to lysis by natural killer (NK) cells and this phenomenon may play a role in some inflammatory cartilage disorders. The mechanisms of chondrocyte recognition and killing by NK cells remain unclear. Using flow cytometry and immunohistochemical staining we found that normal human articular chondrocytes constitutively express a ligand for NKp44, one of stimulatory NK cell receptors involved in recognition and killing of target cells. Expression of NKp44 ligand by normal articular chondrocytes is not involved in their killing by unstimulated NK cells ; however, it is responsible for anti-chondrocyte cytotoxicity mediated by long-term activated NK cells. Thus, expression of NKp44 ligand may play a role in chondrocyte destruction in course of chronic inflammatory cartilage disorders
    corecore