117 research outputs found

    Estrogen Receptor Genotypes, Menopausal Status, and the Lipid Effects of Tamoxifen

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109885/1/cpt6100343.pd

    Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statins are a class of medications that reduce cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Whether statins can benefit patients with dementia remains unclear because of conflicting results. We hypothesized that some of the confusion in the literature might arise from differences in efficacy of different statins. We used a large database to compare the action of several different statins to investigate whether some statins might be differentially associated with a reduction in the incidence of dementia and Parkinson's disease.</p> <p>Methods</p> <p>We analyzed data from the decision support system of the US Veterans Affairs database, which contains diagnostic, medication and demographic information on 4.5 million subjects. The association of lovastatin, simvastatin and atorvastatin with dementia was examined with Cox proportional hazard models for subjects taking statins compared with subjects taking cardiovascular medications other than statins, after adjusting for covariates associated with dementia or Parkinson's disease.</p> <p>Results</p> <p>We observed that simvastatin is associated with a significant reduction in the incidence of dementia in subjects ≥65 years, using any of three models. The first model incorporated adjustment for age, the second model included adjusted for three known risk factors for dementia, hypertension, cardiovascular disease or diabetes, and the third model incorporated adjustment for the Charlson index, which is an index that provides a broad assessment of chronic disease. Data were obtained for over 700000 subjects taking simvastatin and over 50000 subjects taking atorvastatin who were aged >64 years. Using model 3, the hazard ratio for incident dementia for simvastatin and atorvastatin are 0.46 (CI 0.44–0.48, <it>p </it>< 0.0001) and 0.91 (CI 0.80–1.02, <it>p </it>= 0.11), respectively. Lovastatin was not associated with a reduction in the incidence of dementia. Simvastatin also exhibited a reduced hazard ratio for newly acquired Parkinson's disease (HR 0.51, CI 0.4–0.55, <it>p </it>< 0.0001).</p> <p>Conclusion</p> <p>Simvastatin is associated with a strong reduction in the incidence of dementia and Parkinson's disease, whereas atorvastatin is associated with a modest reduction in incident dementia and Parkinson's disease, which shows only a trend towards significance.</p

    Genetic Determinants of Phosphate Response in Drosophila

    Get PDF
    Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired Malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels

    Identification of Neural Outgrowth Genes using Genome-Wide RNAi

    Get PDF
    While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Comparison of two related lines of tauGFP transgenic mice designed for lineage tracing

    Get PDF
    Abstract Background The tauGFP reporter fusion protein is produced nearly ubiquitously by the TgTP6.3 transgene in TP6.3 mice and its localisation to microtubules offers some advantages over soluble GFP as a lineage marker. However, TgTP6.3 Tg/Tg homozygotes are not viable and TgTP6.3 Tg/− hemizygotes are smaller than wild-type. TP6.4 mice carry the TgTP6.4 transgene, which was produced with the same construct used to generate TgTP6.3, so we investigated whether TgTP6.4 had any advantages over TgTP6.3. Results Although TgTP6.4 Tg/Tg homozygotes died before weaning, TgTP6.4 Tg/− hemizygotes were viable and fertile and only males were significantly lighter than wild-type. The TgTP6.4 transgene produced the tauGFP fusion protein by the 2-cell stage and it was widely expressed in adults but tauGFP fluorescence was weak or absent in several tissues, including some neural tissues. The TgTP6.4 transgene expression pattern changed over several years of breeding and mosaic transgene expression became increasingly common in all expressing tissues. This mosaicism was used to visualise clonal lineages in the adrenal cortex of TgTP6.4 Tg/− hemizygotes and these were qualitatively and quantitatively comparable to lineages reported previously for other mosaic transgenic mice, X-inactivation mosaics and chimaeras. Mosaicism occurred less frequently in TP6.3 than TP6.4 mice and was only observed in the corneal epithelium and adrenal cortex. Conclusions Mosaic expression makes the TgTP6.4 transgene unsuitable for use as a conventional cell lineage marker but such mosaicism provides a useful system for visualising clonal lineages that arise during development or maintenance of adult tissues. Differences in the occurrence of mosaicism between related transgenic lines, such as that described for lines TP6.3 and TP6.4, might provide a useful system for investigating the mechanism of transgene silencing

    A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes

    Full text link
    corecore