186 research outputs found

    Photochemistry in the arctic free troposphere: Ozone budget and its dependence on nitrogen oxides and the production rate of free radicals

    Get PDF
    Abstract. Local ozone production and loss rates for the arctic free troposphere (58–85 ◦ N, 1–6 km, February–May) during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 km layer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratios up to ∼300 pptv in February and for NOx mixing ratio

    Defining and Measuring the Patient-Centered Medical Home

    Get PDF
    The patient-centered medical home (PCMH) is four things: 1) the fundamental tenets of primary care: first contact access, comprehensiveness, integration/coordination, and relationships involving sustained partnership; 2) new ways of organizing practice; 3) development of practices’ internal capabilities, and 4) related health care system and reimbursement changes. All of these are focused on improving the health of whole people, families, communities and populations, and on increasing the value of healthcare

    Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    Get PDF
    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a<sup>−1</sup>, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a<sup>−1</sup>, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NO<sub>x</sub> ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a<sup>−1</sup>. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a<sup>−1</sup>) and anthropogenic emissions (2 Tg a<sup>−1</sup>). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NO<sub>x</sub>: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a<sup>−1</sup> and 7.8 Tg a<sup>−1</sup>, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel

    Chemical Characteristics and Ozone Production in the Northern Colorado Front Range

    Get PDF
    We use the extensive set of aircraft and ground-based observations from the NSF/National Center for Atmospheric Research (NCAR) and State of Colorado Front Range Air Pollution and Photochemistry Éxperiment and the NASA DISCOVER-AQ experiments in summer 2014 together with the regional chemical transport model Weather Research and Forecast Model with Chemistry (WRF-Chem) to study the ozone production and chemical regimes in the Northern Colorado Front Range (NFR). We apply the model's Integrated Reaction Rate capability and chemical tendencies diagnostics and present results from an in-depth analysis of the ozone formation in various NFR regions for a case study of 12 August 2014. We further apply these diagnostics along a WRF online trajectory to assess the chemical evolution of an airmass during transport. The results show efficient ozone production within the NFR driven by the availability of NOx and an abundance of highly reactive volatile organic compound and also continued ozone production during the transport into the mountains. We identify CO, formaldehyde, higher alkanes, acetaldehyde, and isoprene among the volatile organic compound species with the highest efficiency in ozone production. Formaldehyde and acetaldehyde concentrations in the NFR have a significant contribution from photochemical production, which in turn is linked back to methane oxidation and to emissions of higher alkanes, isoprene, ethane, and propane. This study provides valuable policy information into the chemical fingerprint of surface ozone in the NFR, an area that is in nonattainment of the U.S. EPA ozone health standards and demonstrates the capability of the newly added diagnostic tool in WRF-Chem to address the drivers behind secondary production of pollutants in greater detail

    Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B

    Get PDF
    International audienceWe present month-long observations of speciated acyl peroxy nitrates (APNs), including PAN, PPN, MPAN, APAN, and the sum of PiBN and PnBN, measured at the Mount Bachelor Observatory (MBO) as part of the INTEX-B collaborative field campaign during spring 2006. APN abundances, measured by thermal dissociation-chemical ionization mass spectrometry (TD-CIMS), are discussed in terms of differing contributions from the boundary layer and the free troposphere and in the context of previous APN measurements in the NE Pacific region. PAN mixing ratios range from 11 to 3955 pptv, with a mean value of 334 pptv for the full measurement period. PPN is linearly correlated with PAN (r2=0.96), with an average abundance of 6.5% relative to PAN; other APNs are generally <1% of PAN. Diurnal cycles and relationships of APNs with ozone reveal a gradient in hydrocarbon chemistry between the boundary layer and the free troposphere. On average, the highest levels of APNs, ozone and PPN/PAN are found in free tropospheric air masses, suggesting that this site is strongly influenced by distant pollution sources. To estimate the impact of long-range transport of Asian pollution on atmospheric composition at MBO, we perform a detailed analysis utilizing HYSPLIT back trajectories. This analysis suggests that trans-Pacific transport of Asian pollution leads to substantial increases in APN and ozone mixing ratios at MBO, especially when transport occurs via the free troposphere. The ensemble of trajectories indicate that Asian-influenced free tropospheric air was sampled in ~16% of our data and contained a median PAN mixing ratio double that of the full dataset

    Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    Get PDF
    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18–19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the campaign, the balloon-based trajectories appear to shear the outflow far more uniformly and decouple it from the surface, thus forming a thin but expansive polluted layer over the Gulf of Mexico that is well aligned with the aircraft observations. These results provide critical context for the extensive aircraft measurements made during the 18–19 March MCMA outflow event and may have broader implications for modelling and understanding long-range transport
    corecore