14 research outputs found

    Quantum resonance, Anderson localisation and selective manipulations in molecular mixtures by ultrashort laser pulses

    Full text link
    We demonstrate that the current laser technology used for field-free molecular alignment via a cascade of Raman rotational transitions allows for observing long-discussed non-linear quantum phenomena in the dynamics of the periodically kicked rotor. This includes the scaling of the absorbed energy near the conditions of quantum resonance and Anderson-like localisation in the angular momentum. Based on these findings, we suggest a novel approach to tunable selective rotational excitation and alignment in a molecular mixture, using trains of short laser pulses. We demonstrate the efficiency of this approach by applying it to a mixture of two nitrogen isotopologues (14N2 and 15N2), and show that strong selectivity is possible even at room temperature

    Quantum resonances in selective rotational excitation of molecules with a sequence of ultrashort laser pulses

    Full text link
    We investigate experimentally the effect of quantum resonance in the rotational excitation of the simplest quantum rotor - a diatomic molecule. By using the techniques of high-resolution femtosecond pulse shaping and rotational state-resolved detection, we measure directly the amount of energy absorbed by molecules interacting with a periodic train of laser pulses, and study its dependence on the train period. We show that the energy transfer is significantly enhanced at quantum resonance, and use this effect for demonstrating selective rotational excitation of two nitrogen isotopologues, 14N2 ^{14}N_2 and 15N2 ^{15}N_2. Moreover, by tuning the period of the pulse train in the vicinity of a fractional quantum resonance, we achieve spin-selective rotational excitation of para- and ortho-isomers of 15N2 ^{15}N_2.Comment: 5 pages, 4 figure

    Photochemistry and spectroscopy of molecules at surfaces: Insights from ab initio molecular dynamics

    Get PDF
    Resumen del trabajo presentado al 2nd CECAM Workshop: "Challenges in reaction dynamics of gas-­surface interactions and methodological advances in dissipative and non­adiabatic processes", celebrado en Toulouse (France) del 27 al 30 de septiembre de 2021.Peer reviewe

    The REST remodeling complex protects genomic integrity during embryonic neurogenesis.

    No full text
    The timely transition from neural progenitor to post-mitotic neuron requires down-regulation and loss of the neuronal transcriptional repressor, REST. Here, we have used mice containing a gene trap in the Rest gene, eliminating transcription from all coding exons, to remove REST prematurely from neural progenitors. We find that catastrophic DNA damage occurs during S-phase of the cell cycle, with long-term consequences including abnormal chromosome separation, apoptosis, and smaller brains. Persistent effects are evident by latent appearance of proneural glioblastoma in adult mice deleted additionally for the tumor suppressor p53 protein (p53). A previous line of mice deleted for REST in progenitors by conventional gene targeting does not exhibit these phenotypes, likely due to a remaining C-terminal peptide that still binds chromatin and recruits co-repressors. Our results suggest that REST-mediated chromatin remodeling is required in neural progenitors for proper S-phase dynamics, as part of its well-established role in repressing neuronal genes until terminal differentiation

    Mäuse als Modelle für menschliche Erkrankungen.

    No full text
    „Modelle für erblich bedingte Erkrankungen des Menschen“ (SMP Models) bietet eine Plattform zur Erstellung, Phänotypisierung und Archivierung von Mausmodellen im Nationalen Genomforschungsnetz (NGFN
    corecore