27 research outputs found

    Changes in Dry State Hemoglobin over Time Do Not Increase the Potential for Oxidative DNA Damage in Dried Blood

    Get PDF
    BACKGROUND: Hemoglobin (Hb) is the iron-containing oxygen transport protein present in the red blood cells of vertebrates. Ancient DNA and forensic scientists are particularly interested in Hb reactions in the dry state because both regularly encounter aged, dried bloodstains. The DNA in such stains may be oxidatively damaged and, in theory, may be deteriorated by the presence of Hb. To understand the nature of the oxidative systems potentially available to degrade DNA in the presence of dried Hb, we need to determine what molecular species Hb forms over time. These species will determine what type of iron (i.e. Fe(2+)/Fe(3+)/Fe(4+)) is available to participate in further chemical reactions. The availability of "free" iron will affect the ability of the system to undergo Fenton-type reactions which generate the highly reactive hydroxyl radical (OH*). The OH* can directly damage DNA. METHODOLOGY/PRINCIPAL FINDINGS: Oxygenated Hb (oxyHb) converts over time to oxidized Hb (metHb), but this happens more quickly in the dry state than in the hydrated state, as shown by monitoring stabilized oxyHb. In addition, dry state oxyHb converts into at least one other unknown species other than metHb. Although "free" iron was detectable as both Fe(2+) and Fe(3+) in dry and hydrated oxyHb and metHb, the amount of ions detected did not increase over time. There was no evidence that Hb becomes more prone to generating OH* as it ages in either the hydrated or dry states. CONCLUSIONS: The Hb molecule in the dried state undergoes oxidative changes and releases reactive Fe(II) cations. These changes, however, do not appear to increase the ability of Hb to act as a more aggressive Fenton reagent over time. Nevertheless, the presence of Hb in the vicinity of DNA in dried bloodstains creates the opportunity for OH*-induced oxidative damage to the deoxyribose sugar and the DNA nucleobases

    Irish Cardiac Society - Proceedings of the Annual General Meeting held November 1993

    Get PDF

    Effectiveness of Florbetapir PET Imaging in Changing Patient Management

    No full text
    Aims: To evaluate the impact of amyloid PET imaging on diagnosis and patient management in a multicenter, randomized, controlled study. Methods: Physicians identified patients seeking a diagnosis for mild cognitive impairment or dementia, possibly due to Alzheimer disease (AD), and recorded a working diagnosis and a management plan. The patients underwent florbetapir PET scanning and were randomized to either immediate or delayed (1-year) feedback regarding amyloid status. At the 3-month visit, the physician updated the diagnosis and recorded a summary of the actual patient management since the post-scan visit. The study examined the impact of immediate versus delayed feedback on patient diagnosis/management at 3 and 12 months. Results: A total of 618 subjects were randomized (1:1) to immediate or delayed feedback arms, and 602 subjects completed the 3-month primary endpoint visit. A higher proportion of patients in the immediate feedback arm showed a change in diagnosis compared to the controls (32.6 vs. 6.4%; p = 0.0001). Similarly, a higher proportion of patients receiving immediate feedback had a change in management plan (68 vs. 55.5%; p < 0.002), mainly driven by changes in AD medication. Specifically, acetylcholinesterase inhibitors were prescribed to 67% of the amyloid-positive and 27% of the amyloid-negative subjects in the information group compared with 56 and 43%, respectively, in the control group (p < 0.0001). These between-group differences persisted until the 12-month visit. Conclusion: Knowledge of the amyloid status affects the diagnosis and alters patient management
    corecore