50 research outputs found

    Expression pattern of STAT5A gene during early bovine embryogenesis

    Get PDF
    Growth hormone (GH) plays an important role in early embryo development. It has been shown to activate multiple pathways, the most comprehensively studied being the STAT/JAK (Signal transducers and activators of transcription/Janus kinase) pathway. The objective of the present study was to investigate STAT5A gene expression during early bovine embryogenesis. Real-time polymerase chain reaction (RT-PCR) was used to measure the abundance of STAT5A transcripts. The mRNA was present at all stages of preimplantation bovine embryos investigated. The most abundant STAT5A expression occurred at the 2-cell stage. Expression was markedly reduced between the 4-cell and 8-cell stages, coinciding with the known time of embryo genome activation and loss of maternal mRNAs. This finding suggests that the embryonic STAT5A gene is primarily activated by maternal gene products

    Combining evidence of selection with association analysis increases power to detect regions influencing complex traits in dairy cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hitchhiking mapping and association studies are two popular approaches to map genotypes to phenotypes. In this study we combine both approaches to complement their specific strengths and weaknesses, resulting in a method with higher statistical power and fewer false positive signals. We applied our approach to dairy cattle as they underwent extremely successful selection for milk production traits and since an excellent phenotypic record is available. We performed whole genome association tests with a new mixed model approach to account for stratification, which we validated via Monte Carlo simulations. Selection signatures were inferred with the integrated haplotype score and a locus specific permutation based integrated haplotype score that works with a folded frequency spectrum and provides a formal test of signifance to identify selection signatures.</p> <p>Results</p> <p>About 1,600 out of 34,851 SNPs showed signatures of selection and the locus specific permutation based integrated haplotype score showed overall good accordance with the whole genome association study. Each approach provides distinct information about the genomic regions that influence complex traits. Combining whole genome association with hitchhiking mapping yielded two significant loci for the trait protein yield. These regions agree well with previous results from other selection signature scans and whole genome association studies in cattle.</p> <p>Conclusion</p> <p>We show that the combination of whole genome association and selection signature mapping based on the same SNPs increases the power to detect loci influencing complex traits. The locus specific permutation based integrated haplotype score provides a formal test of significance in selection signature mapping. Importantly it does not rely on knowledge of ancestral and derived allele states.</p

    Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery

    Get PDF
    The next generation sequencing of a single cow genome with low-to-medium coverage has revealed 2.44 million new SNPs

    Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Get PDF
    Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs) and live pigs carrying a latent TP53(R167H) mutant allele, orthologous to oncogenic human mutant TP53(R175H) and mouse Trp53(R172H), that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H) mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H) allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H) mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal

    Dual Fluorescent Reporter Pig for Cre Recombination: Transgene Placement at the ROSA26 Locus

    Get PDF
    We are extending the Cre/loxP site-specific recombination system to pigs, focussing on conditional and tissue-specific expression of oncogenic mutations to model human cancers. Identifying the location, pattern and extent of Cre recombination in vivo is an important aspect of this technology. Here we report pigs with a dual fluorochrome cassette under the control of the strong CAG promoter that switches expression after Cre-recombination, from membrane-targeted tandem dimer Tomato to membrane-targeted green fluorescent protein. The reporter cassette was placed at the porcine ROSA26 locus by conventional gene targeting using primary mesenchymal stem cells, and animals generated by nuclear transfer. Gene targeting efficiency was high, and analysis of foetal organs and primary cells indicated that the reporter is highly expressed and functional. Cre reporter pigs will provide a multipurpose indicator of Cre recombinase activity, an important new tool for the rapidly expanding field of porcine genetic modification

    Porcine model elucidates function of p53 isoform in carcinogenesis and reveals novel circTP53 RNA

    Get PDF
    Recent years have seen an increasing number of genetically engineered pig models of human diseases including cancer. We previously generated pigs with a modified TP53 allele that carries a Cre-removable transcriptional stop signal in intron 1, and an oncogenic mutation TP53R167H (orthologous to human TP53R175H) in exon 5. Pigs with the unrecombined mutant allele (flTP53R167H) develop mainly osteosarcoma but also nephroblastomas and lymphomas. This observation suggested that TP53 gene dysfunction is itself the key initiator of bone tumorigenesis, but raises the question which aspects of the TP53 regulation lead to the development of such a narrow tumour spectrum. Molecular analysis of p53 revealed the presence of two internal TP53 promoters (Pint and P2) equivalent to those found in human. Consequently, both pig and human express TP53 isoforms. Data presented here strongly suggest that P2-driven expression of the mutant R167H-Δ152p53 isoform (equivalent to the human R175H-Δ160p53 isoform) and its circular counterpart circTP53 determine the tumour spectrum and play a critical role in the malignant transformation in flTP53R167H pigs. The detection of Δ152p53 isoform mRNA in serum is indicative of tumorigenesis. Furthermore, we showed a tissue-specific p53-dependent deregulation of the p63 and p73 isoforms in these tumours. This study highlights important species-specific differences in the transcriptional regulation of TP53. Considering the similarities of TP53 regulation between pig and human, these observations provide useful pointers for further investigation into isoform function including the novel circTP53 in both the pig model and human patients.ISSN:0950-9232ISSN:1476-559
    corecore