73 research outputs found

    Sleep and recovery in physicians on night call: a longitudinal field study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that physicians' night-call duty may cause impaired performance and adverse effects on subjective health, but there is limited knowledge about effects on sleep duration and recovery time. In recent years occupational stress and impaired well-being among anaesthesiologists have been frequently reported for in the scientific literature. Given their main focus on handling patients with life-threatening conditions, when on call, one might expect sleep and recovery to be negatively affected by work, especially in this specialist group. The aim of the present study was to examine whether a 16-hour night-call schedule allowed for sufficient recovery in anaesthesiologists compared with other physician specialists handling less life-threatening conditions, when on call.</p> <p>Methods</p> <p>Sleep, monitored by actigraphy and Karolinska Sleep Diary/Sleepiness Scale on one night after daytime work, one night call, the following first and second nights post-call, and a Saturday night, was compared between 15 anaesthesiologists and 17 paediatricians and ear, nose, and throat surgeons.</p> <p>Results</p> <p>Recovery patterns over the days after night call did not differ between groups, but between days. Mean night sleep for all physicians was 3 hours when on call, 7 h both nights post-call and Saturday, and 6 h after daytime work (p < 0.001). Scores for mental fatigue and feeling well rested were poorer post-call, but returned to Sunday morning levels after two nights' sleep.</p> <p>Conclusions</p> <p>Despite considerable sleep loss during work on night call, and unexpectedly short sleep after ordinary day work, the physicians' self-reports indicate full recovery after two nights' sleep. We conclude that these 16-hour night duties were compatible with a short-term recovery in both physician groups, but the limited sleep duration in general still implies a long-term health concern. These results may contribute to the establishment of safe working hours for night-call duty in physicians and other health-care workers.</p

    Clinical and experimental findings in the blast-induced rupture of the drum head

    No full text

    Infraslow EEG activity in burst periods from post asphyctic full term neonates

    No full text
    OBJECTIVE: To investigate whether very low EEG frequency activity can be recorded from post asphyctic full term neonates using EEG equipment where the high pass filter level was lowered to 0.05 Hz. METHODS: The time constant of the amplifier hardware was set to 3.2 s in order to enable recordings that equal to a high pass filter cut off at 0.05 Hz. Burst episodes were selected from the EEGs of 5 post asphyctic full term neonates. The episodes were analysed visually using different montages and subjected to power spectrum analysis. Powers in two bands were estimated; 0-1 and 1-4 Hz, designated very low- and low-frequency activity, respectively (VLFA, LFA). RESULTS: In all infants, VLFA coinciding with the burst episodes could be detected. The duration of the VLFA was about the same as that of the burst episode i.e. around 4s. The activity was most prominent over the posterior regions. In this small material, a large amount of VLFA neonatally seemed to possibly be related to a more favourable prognosis. CONCLUSIONS: VLFA can be recorded from post asphyctic full term neonates using EEG equipment with lowered cut off frequency for the high pass filter. SIGNIFICANCE: VLFA normally disregarded due to filtering, is present in the EEG of sick neonates and may carry important clinical information

    Spectral distance for ARMA models applied to electroencephalogram for early detection of hypoxia

    No full text
    A novel measure of spectral distance is presented, which is inspired by the prediction residual parameter presented by Itakura in 1975, but derived from frequency domain data and extended to include autoregressive moving average (ARMA) models. This new algorithm is applied to electroencephalogram (EEG) data from newborn piglets exposed to hypoxia for the purpose of early detection of hypoxia. The performance is evaluated using parameters relevant for potential clinical use, and is found to outperform the Itakura distance, which has proved to be useful for this application. Additionally, we compare the performance with various algorithms previously used for the detection of hypoxia from EEG. Our results based on EEG from newborn piglets show that some detector statistics divert significantly from a reference period less than 2 min after the start of general hypoxia. Among these successful detectors, the proposed spectral distance is the only spectral-based parameter. It therefore appears that spectral changes due to hypoxia are best described by use of an ARMA- model-based spectral estimate, but the drawback of the presented method is high computational effort
    • 

    corecore