21 research outputs found

    Apps With Amps: Mobile Devices, Hearing Assistive Technology, and Older Adults

    No full text

    Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells

    Get PDF
    Summary: Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs. : In this article, VanderWall and colleagues demonstrate the morphological and functional maturation of hPSC-derived RGCs over time, including the role of astrocytes in their functional maturation. Results indicated that hPSC-derived RGCs were capable of exhibiting robust neurite outgrowth and functional properties, with the direct contact with astrocytes significantly enhancing this maturation. As astrocytes are a major component of the nerve fiber layer and optic nerve, the results of these studies constitute a model for studying these cellular interactions in vitro. Keywords: stem cell, retina, retinal ganglion cell, astrocyte, development, differentiation, pluripotent stem cel

    Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells

    Get PDF
    Abstract Retinal organoids are three-dimensional structures derived from human pluripotent stem cells (hPSCs) which recapitulate the spatial and temporal differentiation of the retina, serving as effective in vitro models of retinal development. However, a lack of emphasis has been placed upon the development and organization of retinal ganglion cells (RGCs) within retinal organoids. Thus, initial efforts were made to characterize RGC differentiation throughout early stages of organoid development, with a clearly defined RGC layer developing in a temporally-appropriate manner expressing a complement of RGC-associated markers. Beyond studies of RGC development, retinal organoids may also prove useful for cellular replacement in which extensive axonal outgrowth is necessary to reach post-synaptic targets. Organoid-derived RGCs could help to elucidate factors promoting axonal outgrowth, thereby identifying approaches to circumvent a formidable obstacle to RGC replacement. As such, additional efforts demonstrated significant enhancement of neurite outgrowth through modulation of both substrate composition and growth factor signaling. Additionally, organoid-derived RGCs exhibited diverse phenotypes, extending elaborate growth cones and expressing numerous guidance receptors. Collectively, these results establish retinal organoids as a valuable tool for studies of RGC development, and demonstrate the utility of organoid-derived RGCs as an effective platform to study factors influencing neurite outgrowth from organoid-derived RGCs
    corecore