30 research outputs found

    Comparative analysis of three brevetoxin-associated bottlenose dolphin (Tursiops truncatus) mortality events in the Florida Panhandle region (USA)

    Get PDF
    In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events

    Vectors of Brevetoxins to Marine Mammals

    Get PDF
    Mass mortalities of Florida manatees (Trichechus manatus latirostris) and bottlenose dolphins (Tursiops truncatus) have been attributed to brevetoxins produced by the Florida red tide dinoflagellate Karenia brevis. The multiple routes through which marine mammals can be exposed to brevetoxins have complicated efforts to understand the mechanisms that lead to mass mortality events. In spring of 2002, 34 endangered Florida manatees died in southwest Florida, and in spring of 2004, 107 bottlenose dolphins died in the Florida Panhandle. These events provided unique opportunities to make clear connections between ingested brevetoxins and marine mammal mortalities without the confounding issues of concurrent exposure through direct contact or inhalation. Prior to 2002, the accumulation of brevetoxins on or in seagrass had never been previously reported, and the delayed or chronic exposure of manatees to brevetoxins through seagrass was not recognized as a threat. Brevetoxins were shown to persist in association with seagrass at high levels for weeks and at lower levels for months in the absence of K. brevis. Analyses of the epiphytes and detritus on the surface of the seagrass leaves as well as of the cleaned seagrass leaves and rhizomes revealed that during a K. brevis bloom as much as half of the toxin present in the seagrass may be associated with the leaves themselves, while after a bloom, the majority of the toxin present is associated with the epiphytes. The 2004 mass mortality of bottlenose dolphins in the Florida Panhandle clearly indicated that fish have the potential to vector brevetoxins to higher tropic levels. Analyses of fish collected live from St. Joseph Bay and southwest Florida revealed that brevetoxin accumulation in fish is a common occurrence. Planktivorous clupeid fish are capable of accumulating high concentrations of brevetoxins within their viscera, and their movement can result in spatial separation of a bloom and animal exposure. Sciaenid species and pinfish also accumulated brevetoxins but to a lower extent. These fish, as well as other omnivorous and piscivorous species, may retain brevetoxins in their tissues at significant concentrations after a bloom has dissipated, which may lead to temporal separation of blooms and animal exposure

    Dietary exposure to harmful algal bloom (HAB) toxins in the endangered manatee (Trichechus manatus latirostris) and green sea turtle (Chelonia mydas) in Florida, USA

    No full text
    Florida is a hotspot for cyano- and microalgal harmful algal blooms (HABs) with annual red-tide events off-shore and blooms of Lyngbya spp. commonly observed in both marine and freshwater environments. This region also provides extensive foraging habitat for large populations of herbivorous green turtles (Chelonia mydas) and manatees (Trichechus manatus latirostris). The exposure of aquatic organisms to HAB toxins is not well known and whilst acute exposures are better understood, the vulnerability of aquatic animals to chronic exposure from multiple HAB toxins over prolonged periods has rarely been addressed. This study aimed to identify the presence of toxic compounds produced by HAB species commonly found in Florida (brevetoxins, okadaic acid, saxitoxins and Lyngbya toxins) in tissues and gut samples from manatee and green sea turtles that stranded in Florida, USA. Muscle, liver and alimentary tract samples were opportunistically collected from 14 manatees and 13 green turtles that stranded on the Florida shoreline between December 2003 and February 2006. Samples from each animal were assessed for the presence of brevetoxin, okadaic acid, lyngbyatoxin-A and saxitoxin. Nine (64%) manatees and 11 (85%) turtles were found to have been exposed to one or more of the HAB toxins. Okadaic acid and saxitoxin were only found in alimentary tract samples, whereas brevetoxin was more widely distributed. No lyngbyatoxin-A was observed in any tissue samples. The majority of turtles (13) stranded on the Atlantic coast between St. Johns and Monroe counties, with one on the Gulf coast at Bay County, whereas nine manatees were stranded on the Gulf coast between Levy and Lee counties, with the remaining five between Volusia and Brevard counties on the Atlantic coast. This HAB toxin screen has identified that a large proportion of a random sample of turtles and manatees that stranded in Florida in 2003–2006 were exposed to HAB toxins. Most of the concentrations measured were low, and the toxins were directly linked to the death of only three of these animals. However, the presence of these compounds, and in some cases the presence of multiple HAB toxins in individual animals, indicates that turtles and manatees in Florida are exposed to deleterious compounds at sub-lethal levels in their environment, which could ultimately compromise their health

    Dietary exposure to harmful algal bloom (HAB) toxins in the endangered manatee (Trichechus manatus latirostris) and green sea turtle (Chelonia mydas) in Florida, USA

    No full text
    Florida is a hotspot for cyano- and microalgal harmful algal blooms (HABs) with annual red-tide events off-shore and blooms of Lyngbya spp. commonly observed in both marine and freshwater environments. This region also provides extensive foraging habitat for large populations of herbivorous green turtles (Chelonia mydas) and manatees (Trichechus manatus latirostris). The exposure of aquatic organisms to HAB toxins is not well known and whilst acute exposures are better understood, the vulnerability of aquatic animals to chronic exposure from multiple HAB toxins over prolonged periods has rarely been addressed. This study aimed to identify the presence of toxic compounds produced by HAB species commonly found in Florida (brevetoxins, okadaic acid, saxitoxins and Lyngbya toxins) in tissues and gut samples from manatee and green sea turtles that stranded in Florida, USA. Muscle, liver and alimentary tract samples were opportunistically collected from 14 manatees and 13 green turtles that stranded on the Florida shoreline between December 2003 and February 2006. Samples from each animal were assessed for the presence of brevetoxin, okadaic acid, lyngbyatoxin-A and saxitoxin. Nine (64%) manatees and 11 (85%) turtles were found to have been exposed to one or more of the HAB toxins. Okadaic acid and saxitoxin were only found in alimentary tract samples, whereas brevetoxin was more widely distributed. No lyngbyatoxin-A was observed in any tissue samples. The majority of turtles (13) stranded on the Atlantic coast between St. Johns and Monroe counties, with one on the Gulf coast at Bay County, whereas nine manatees were stranded on the Gulf coast between Levy and Lee counties, with the remaining five between Volusia and Brevard counties on the Atlantic coast. This HAB toxin screen has identified that a large proportion of a random sample of turtles and manatees that stranded in Florida in 2003-2006 were exposed to HAB toxins. Most of the concentrations measured were low, and the toxins were directly linked to the death of only three of these animals. However, the presence of these compounds, and in some cases the presence of multiple HAB toxins in individual animals, indicates that turtles and manatees in Florida are exposed to deleterious compounds at sub-lethal levels in their environment, which could ultimately compromise their health. © 2013 Elsevier B.V

    Prevalence of brevetoxins in prey fish of bottlenose dolphins in Sarasota Bay, Florida

    Get PDF
    Blooms of the brevetoxin-producing dinoflagellate Karenia brevis have been linked to high mortality of bottlenose dolphins Tursiops truncatus on Florida’s Gulf of Mexico coast. A clear understanding of trophic transfer of brevetoxin from its algal source up the food web to top predators is needed to assess exposure of affected dolphin populations. Prey fish constitute a means of accumulating and transferring brevetoxins and are potential vectors of brevetoxin to dolphins frequently exposed to K. brevis blooms. Here we report results of brevetoxin analyses of the primary fish species consumed by long-term resident bottlenose dolphins inhabiting Sarasota Bay, Florida. Fish collected during K. brevis blooms in 2003 to 2006 were analyzed by competitive enzyme-linked immunosorbent assay (ELISA) and had brevetoxin concentrations ranging from 4 to 10844 ng PbTx-3 eq g–1 tissue. Receptor binding assay (RBA) and liquid chromatography–mass spectrometry (LC-MS) analysis confirmed toxicity and the presence of parent brevetoxins and known metabolites. Fish collected in the absence of K. brevis blooms tested positive for brevetoxin by ELISA and RBA, with concentrations up to 1500 ng PbTx-3 eq g–1 tissue. These findings implicate prey fish exposed to K. brevis blooms as brevetoxin vectors for their dolphin predators and provide a critical analysis of persistent brevetoxin loads in the food web of dolphins repeatedly exposed to Florida red tides

    Brevetoxin concentrations in various sample types from stranded bottlenose dolphins in the 2004 UME.

    No full text
    <p>Values (mean calculations of all available assay data) are reported in ng brevetoxin-3 equiv./g or ng/mL. Data are median, quartile, and minimum/maximum values indicated by the midline, box, and whisker lines; respectively. Note: “</p
    corecore