274 research outputs found

    Quench front progression in a superheated porous medium: experimental analysis and model development

    Get PDF
    In case of severe accident in a nuclear reactor, the fuel rods may be highly damaged and oxidized and finally collapse to form a debris bed. Removal of decay heat from a debris bed is a challenging issue because of the difficulty for water to flow inside. Currently, IRSN has started experimental program PEARL with two experimental facilities PRELUDE and PEARL, to investigate the reflood process at high temperature, for various particle sizes. On the basis of PRELUDE experimental results, the thermal hydraulic features of the quench front have been analysed and the intensity of heat transfers was estimated. From a selection of experimental results, a reflooding model was improved and validated. The model is implemented in the code ICARE-CATHARE developed by IRSN which is used for severe accident reactor analysis

    Quench front progression in a superheated porous medium: experimental analysis and model development

    Get PDF
    In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. Any attempt to inject water during core degradation can lead to quenching and further fragmentation of core material. The fragmentation of fuel rods and melting of reactor core materials may result in the formation of a "debris bed". The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1-5 mm). The two-phase flow model for reflood of the degraded core is briefly introduced in this paper. It is implemented into the ICARE-CATHARE code, developed by IRSN (Institut de radioprotection et de sûreté nucléaire), to study severe accident scenarios in pressurized water reactors. Currently, the French IRSN sets up two experimental facilities to study debris bed reflooding, PEARL and PRELUDE, and validate safety models. The PRELUDE program studies the complex two phase flow (water/steam), in a porous medium (diameter 180 mm, height 200 mm), initially heated to a high temperature (400 °C or 700 °C). On the basis of the experimental results, thermal hydraulic features at the quench front have been analyzed. The two-phase flow model shows a good agreement with PRELUDE experimental results

    Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne

    Full text link
    The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + alpha threshold. We have measured the alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction at 43 MeV/u. Combining our measurements with previous determinations of the radiative widths of these states, we conclude that no significant breakout from the hot CNO cycle into the rp process in novae is possible via 15O(alpha,gamma)19Ne, assuming current models accurately represent their temperature and density conditions

    Alpha-decay branching ratios of near-threshold states in <sup>19</sup>Ne and the astrophysical rate of <sup>15</sup> O(α, γ )<sup>19</sup>Ne

    Get PDF
    The 15O(α,γ)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + α threshold. We have measured the α-decay branching ratios for these states using the p(21lNe,t)19Ne reaction at 43 MeV/u.</p
    • 

    corecore