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Chapter 2

Elements of theory

In this chapter, the theoretical framework describing the processes we are
studying will be summarised. In the first section, the radiative-capture
model will be explained. The second section describes the excitation
process of a projectile in a target Coulomb field. First, the semiclas-
sical Coulomb-dissociation theory is detailed to justify the use of the
virtual-photon method. It is shown how to extract the photonuclear
cross section from the Coulomb-excitation cross section and subsequently
the radiative-capture cross section. Second, a pure quantum-mechanical
model is discussed, which takes account of the nuclear and Coulomb
interactions as well as the resulting interferences in the angular distribu-
tion of the excited oxygen nucleus. It will be shown that the interference
pattern between nuclear and Coulomb processes can be used to measure
the pure Coulomb contribution. In a second phase, we will show the sen-
sitivity of the fragment angular correlation to the multipolarity of the
excitation process and thus the necessity of the correlation measurement
to separate the various multipole contributions.

2.1 Radiative capture

2.1.1 Coulomb-barrier penetration

The relative energy is referred to as the sum of the centre-of-mass ki-
netic energies of two colliding particles, given in the non-relativistic
case by ε = µv2/2, where µ is the reduced mass and v is the rela-
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28 Elements of theory

Figure 2.1: The Coulomb barrier classically prevents low-energy parti-
cles to approach each other. The nuclear potential is here described as
a square well. The relative energy of about 300 keV corresponds to the
Gamow-peak energy (see also fig. 2.2).

tive velocity, i.e. the sum of the velocities in the centre of mass. The
distribution of the relative energy in a stellar medium is described by
the Maxwell-Boltzmann distribution, and thus the mean relative-energy
value is 3kT/2, i.e. 26 keV at 2 × 108 K. The Coulomb barrier of the
12C+α system is approximately VC = ZCZαe2/RN ' 3.43 MeV (see
fig. 2.1), where RN ' 5.0 fm is the the sum of the nuclear radii. There-
fore, the Coulomb barrier between 12C and α is far higher than the
average thermal energy. Particles in a 26-keV thermalised system would
not approach one another closer than RT = 665 fm (the classical turning
point). The normalised abundance of particles above VC at this temper-
ature is calculated by integration of the Maxwell-Boltzmann distribution
from VC up to infinity, which gives approximately 10−85. Therefore, it
is classically excluded to cross the barrier and it is essential to consider
the quantum-mechanical tunnelling.

The probability to find a particle at a position r is given by |ψ(r)|2.
Therefore, the probability that an incoming particle be found inside the
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nucleus at RN relative to finding it at the turning point RT is given by

T =
|ψ(RN)|2
|ψ(RT )|2 . (2.1)

The solution of the Schrödinger equation for a particle of energy ε in
a broad and high potential V (r), calculated by the Wentzel-Kramers-
Brillouin (WKB) approximation [Mer61], gives a penetration factor of
[Bet47]

T ' exp

(
−2

~

∫ RN

RT

√
2µ(V (r)− ε) dr

)
, (2.2)

where µ is the reduced mass. This is equal to [Rol88]

T ' exp

[
−2KRT

(
arctan

√
RT /RN − 1√

RT /RN − 1
− RN

RT

)]
, (2.3)

where K =
√

2µ(VC − ε)/~.
The multiplication of the penetration factor with the Maxwell-Boltz-

mann distribution shows a maximum at approximately 300 keV called
the Gamow peak, with a FWHM of about 170 keV (fig. 2.2). By inte-
grating the Gamow peak over the energy, the fraction of particle pairs
passing through their Coulomb barrier at 2×108 K is found to be about
10−16, which is sufficient to induce the reaction in the star [Rol88]. This
abundance is extremely sensitive to the temperature, for instance, re-
ducing the temperature by a factor of two would decrease the reaction
yield by a factor of one million.

2.1.2 The S factor

The radiative-capture cross section σcap of 12C and α is proportional to
the interacting area of the involved nuclei, given quantum-mechanically
by πλ−2, where λ− = ~/

√
2µε is the reduced wavelength of the system.

This is multiplied with the transition probability TΠl of the given chan-
nel l (Π symbolising E or M, i.e. electric or magnetic multipolarity) and
with the number of corresponding available substates. Thus, the cross
section for spinless, non-identical particles is written

σcap
Πl (ε) =

π~2

2µε
(2l + 1)TΠl . (2.4)
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Figure 2.2: The Gamow peak at approximately 300 keV is the prod-
uct of the Maxwell-Boltzmann distribution with the tunnelling prob-
ability for a radiative-capture reaction 12C+α in a thermal system
at T = 2 × 108 K. This is the energy region where the reaction is
more likely to take place. At higher energies the number of particles
becomes insignificant while at lower energies the tunnelling through the
Coulomb barrier makes the reaction improbable. The dimension of the
Maxwell-Boltzmann distribution and of the Gamow peak is keV−1, while
the tunnelling probability is dimensionless.
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The total capture cross section for a given transition is thus

σcap(ε) =
∑

l

σcap
El (ε) + σcap

Ml (ε) . (2.5)

Traditionally, the total cross section is written in the form

σcap(ε) = S(ε)
1

ε
exp(−2πη) , (2.6)

where 1/ε represents the energy dependence of the de Broglie wavelength
and e−2πη is a parameter containing the exponential dependence of the
transition probabilities (originally a tunnelling probability approxima-
tion valid for light particles, following eq. 2.3), and

η =
ZCZαe2

~

√
µ

2ε
(2.7)

is the Sommerfeld (or Coulomb) parameter. S(ε) is referred to as the
‘astrophysical factor’ (or sometimes ‘nuclear factor’). It is a more con-
venient, smoothly-varying function containing the nuclear information
and the normalisation of the cross section.

2.1.3 Decomposition of the capture probabilities

Once the geometrical cross section has been defined, it is necessary to
calculate the matrix elements that determine the reaction probabilities
via the radiative-capture model, which is presented here following Blatt
and Weisskopf [Bla79].

In this approach, the fusion of 12C and α can be seen as a radia-
tive transition of a system from an unbound state |ψCα〉 to a bound
state |ψO∗〉. This system is characterised by charge and current densi-
ties, the matrix elements of which are given by, respectively,

ρ(~r) = e ψ∗Cα(~r) ψO∗(~r) , (2.8)

~(~r) =
e

2µ

[
ψ∗Cα ( ~P ψO∗) + ( ~P ψCα)∗ ψO∗

]
, (2.9)

where ~P = −i~~∇ is the momentum operator. These generate the out-
going varying electromagnetic fields ~E(~r) e−iωt and ~H(~r) e−iωt for the
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energy component ~ω. These fields can be expressed in the form of
multipole elements in order to integrate over space the time-averaged
energy carried away by the wave. The photon emission probability per
unit time, i.e. the radiative transition probability per unit time, is then
extracted by calculating the ratio of this energy to that of one pho-
ton Eγ = ~ω. The corresponding transition amplitudes (approximated
for a wavelength large compared to the dimension of the source) are then
given by

acap
Elm '

(
8π

~
l + 1

l

) 1
2 k

l+ 1
2

γ

(2l + 1)!!

∫

τ

ρ(~r)rl Y∗lm(θ, φ) dτ , (2.10)

acap
Mlm ' − i

c(l + 1)

(
8π

~
l + 1

l

) 1
2 k

l+ 1
2

γ

(2l + 1)!!
×

∫

τ

~(~r) · ~L rl Y∗lm(θ, φ) dτ, (2.11)

where τ is the volume of the system, kγ is the wave number of the photon,

Ylm is a spherical harmonics and ~L = −i~r× ~∇ is the angular-momentum
operator. The notation ‘double factorial’ is defined as (2l + 1)!! = 1 ×
3× ...× (2l + 1).

In the long-wavelength approximation, the matrix elements of the
electric and magnetic multipole moments are defined for a given multi-
polarity, respectively, as [Boh69]

〈ψO∗ |MElm |ψCα〉 '
∫

τ

ρ(~r) rl Ylm(θ, φ) dτ , (2.12)

〈ψO∗ |MMlm |ψCα〉 ' − i

c(l + 1)

∫

τ

~(~r) · ~L rl Ylm(θ, φ) dτ. (2.13)

They depend on the structure of the system and thus on the collision
dynamical parameters. These contain the isoscalar and isovector contri-
butions [Bay83]. In isospin formalism (i.e. writing the nucleon charge
ek = (1/2− tzk)e, where tzk is the third component of the isospin vector
of the kth nucleon) it is trivial to show that the isoscalar term is zero for
a dipole electric transition.

Inserting eqs. 2.8, 2.9, 2.12 and 2.13 into eqs. 2.10 and 2.11, and
making use of the property Y∗lm = (−1)m Yl −m, the transition amplitudes
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from state |ψCα〉 to state |ψO∗〉 can be rewritten in the general form

acap
Πlm = (−1)m

(
8π

~
l + 1

l

) 1
2 k

l+ 1
2

γ

(2l + 1)!!
〈ψO∗ |MΠl −m |ψCα〉 . (2.14)

The radiative capture probability per unit time P cap
Πlm = |acap

Πlm|2 is then
given by

P cap
Πlm =

8π(l + 1)

l(2l + 1)!!2
1

~

(
Eγ

~c

)2l+1

|〈ψO∗|MΠl −m |ψCα〉|2 . (2.15)

The orientation of the substates being not relevant for the transition
probabilities, only the average probability over the substates m is con-
sidered. The total capture probability is given for spinless particles by
P cap

Πl =
∑

m P cap
Πlm. Note that this is only valid for spinless particles, for a

more general reaction a(b,γ)c the probability must be averaged over the
initial substates and summed over the final states such that the statis-
tical factor becomes (2Ic + 1)/(2Ia + 1)(2Ib + 1), where Ia, Ib and Ic are
the spins of the particles.

The cross section of two colliding nuclei is defined by the ratio of the
transition probability per unit time to the incident flux, summed over
the final substates and averaged over the initial substates. For spinless
particles, and defined for a unit-flux scattering wave function, this is
given by [Bay83]

σcap
Πl (ε) = (2l + 1)

8π(l + 1)

l(2l + 1)!!2
1

~

(
Eγ

~c

)2l+1

Bcap
Πl (ε) , (2.16)

where Bcap
Πl is the ‘reduced transition probability’ between an unbound

state and a bound state, containing the nuclear information and the
dynamical parameters of the collision. It is strongly model-dependent
and defined as

Bcap
Πl =

∑
m

|〈ψO∗|MΠl −m |ψCα〉|2 . (2.17)

For an isolated narrow resonance (and as an approximation for a
broad resonance) the radiative-capture cross section of spinless particles
is described by the Breit-Wigner formula [Val89b]:

σcap
Πl (ε) =

π~2

2µε
(2l + 1)

ΓαΓγ

(ε− ε∗)2 + (Γ/2)2
, (2.18)
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where ε∗ is the energy of the resonance in the centre of mass, and Γ, Γγ

and Γα are the total, radiative and α widths, respectively. Comparing
eq. 2.18 and eq. 2.16, the reduced capture probability is written

Bcap
Πl (ε) =

π~3

2µε

l(2l + 1)!!2

8π(l + 1)

(
~c
Eγ

)2l+1
ΓαΓγ

(ε− ε∗)2 + (Γ/2)2
. (2.19)

2.2 Coulomb dissociation

2.2.1 Principle

The Coulomb-dissociation method consists in using the fact that a pro-
jectile passing by a target nucleus sees the differential Coulomb field
as an electromagnetic pulse (fig. 2.3), which is in QED interpreted as
a virtual photon according to the Weizsäcker-Williams virtual-quanta
method [Jac75]. The target nucleus is chosen to be 208Pb because of
a strong Coulomb field and the relatively low density of the low-lying
excited states, i.e. a low probability for target excitation. The pulse
time (or collision time) can be approximated by τc ' b/2γV , where b
is the impact parameter, V is the beam velocity and γ is the Lorentz
factor. An excitation from the ground state to a state at energy E∗ is
only possible when the collision time is shorter than the transition time
τt = ~/E∗, otherwise the nucleus reacts adiabatically. This is described
by the adiabaticity parameter [Tat96]

ξ =
τc

τt

=
bE∗

2γV ~
. 1 . (2.20)

Because of the condition of adiabaticity the Coulomb-dissociation pro-
cess favours low excitation energies, thus low relative energies between
fragments after breakup, which makes it useful for astrophysical pur-
poses. The resonant breakup is referred to as a sequential process since
the life time of a resonance τ = ~/Γ (3×105 and 2×103 fm/c for the levels
at 9.58 and 9.84 MeV in 16O), where Γ is the width, is much larger than
the collision time (18 fm/c for Erel = 80 MeV/u relative energy between
16O and 208Pb at a 15-fm impact parameter). In case of a direct breakup,
the process is assumed to be instantaneous, nevertheless the time needed
for the fragments to separate is estimated to be (Rα + RC)/v [Bau94],
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Figure 2.3: Field components of the electromagnetic pulse in the 16O
projectile passing by a 208Pb nucleus, for an energy of 80 MeV/u and an
impact parameter of 15 fm.
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where RC and Rα are the 12C and α radii, respectively, and v is the
fragments’ relative velocity. This time is still relatively long for low en-
ergies (115 to 340 fm/c for 2.7 MeV to 300 keV) and the direct breakup
process can be described as a ‘quasi-sequential’ process. Therefore, both
resonant and non-resonant reactions are written [Sri88]

16O + 208Pb −→ 16O∗ + 208Pb −→ 12C + α + 208Pb . (2.21)

Scattering can be described by the classical Rutherford law or by
a DWBA (Distorted-Wave Born Approximation) calculation. In both
cases, the excitation process is calculated in first-order perturbation the-
ory. In the first section, the semiclassical approach will be used to extract
the virtual photons from the Coulomb field and estimate the photonu-
clear cross section, and consequently the radiative-capture cross section
making use of the detailed-balance theorem. The second section will
explain how to take into account the nuclear interaction effects.

2.2.2 Semiclassical model

The semiclassical model of the Coulomb dissociation describes the 16O
and 208Pb nuclei as classical objects moving on a hyperbolic trajectory
with respect to each other. The excitation probablities of a nucleus are
calculated with the first-order perturbation theory in order to extract the
number of virtual photons that can participate to the excitation process.
Such an assumption is valid if three conditions are fulfilled [Kie99]:

1– The de Broglie wavelength of the system ~/mV , where m is the
reduced mass, must be small enough when compared to the distance of
closest approach on the hyperbolic trajectory, given by 2ZOZPb e2/EO.
This leads to the condition

η =
ZOZPb e2

~V
À 1

4
, (2.22)

where η is the Sommerfeld parameter, and ZO and ZPb are the charge
numbers of 16O and 208Pb, respectively. In the case EO = 80 MeV/u
(V ' 0.390 c) one has η ' 12.3.

2– The excitation process must not appreciably modify the trajec-
tory, i.e. E∗ ¿ EO, where E∗ is the excitation energy (equal to Eγ, the
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energy of the virtual photon). In practice, E∗ is a few MeV while EO is
of the order of GeV.

3– The nuclei must not touch or interpenetrate in order to avoid
nuclear-interaction effects. Thus, for a relative energy higher than the
Coulomb-potential barrier, the distance of approach a must be greater
than the sum of the nuclear radii, with a = D+

√
D2 + b2, where b is the

impact parameter and D = ZOZPb e2/mV 2 is half the distance of closest
approach when b = 0. Therefore, b > (RO +RPb)

√
1− 2D/(RO + RPb);

for high energies, this can be approximated to b > RO + RPb −D.
After scattering, the projectiles are distributed on a cone, the opening

of which depends on the impact parameter. The differential cross section
is given by the Rutherford law [Val89a]:

dσR

dΩ
=

D2

4

1

sin4 Θ
2

, (2.23)

where Θ = 2 arctan(D/b) is the scattering angle.
The impact parameter is thus strictly limited by the interpenetration

and adiabaticity conditions: RO + RPb − D . b . 2γV ~/E∗, which
corresponds, for E∗ = 9.84 MeV and EO = 80 MeV/u to a scattering
angular range of

3.0◦ . Θ . 4.9◦ . (2.24)

The lower limit decreases at lower energy and the higher limit increases
with a smaller reduced radius (this was here chosen 1.3 fm; it will be
shown in section 2.2.3 that this is actually smaller for this reaction).

Transition probabilities

Since the trajectory is not appreciably modified by the excitation process
(condition 2), the excitation cross section of 16O from an initial state |ψO〉
of eigen energy E0 (E0 = 0 for ground state) to a final state |ψO∗〉 of
eigen energy E0 + E∗ can be expressed in the double-differential form

d2σexc

dΩdE
(E∗, Θ) =

dσR

dΩ
(Θ)

dP exc

dE
(E∗, Θ) , (2.25)
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where dP exc/dE is the probability per unit energy to find the system in
the state |ψO∗〉 for a given angle Θ (or equivalently an impact parame-
ter b) and defined as

dP exc

dE
= |a1|2 , (2.26)

with the system described by the wave function

|ψ〉 = a0(t) e−i
E0~ t |ψO〉+ a1(t) e−i E∗

~ t |ψO∗〉 , (2.27)

and with a1 ¿ a0, which allows to apply first-order perturbation theory.
Let H = H(0) +H(1) be the total Hamiltonian of the perturbed system,
where H(0) is the non-perturbative Hamiltonian and H(1) is the first-
order transition Hamiltonian. The time-dependent Schrödinger equation

(H(0) +H(1)
) |ψ〉 = i~

d

dt
|ψ〉 (2.28)

is solved by inserting eq. 2.27 and multiplying by 〈ψO∗|. One finds

a1 =
1

i~

∫ +∞

−∞
〈ψO∗|H(1) |ψO〉 eiωtdt , (2.29)

where ω = E∗/~.
A second-order process would have to take into account multiple-

photon excitation but this has been shown to be negligible [Tat96] in
most transitions.

Each Hamiltonian and transition amplitude is now split into electric
and magnetic components. If the relative velocity is small compared
to the speed of light and if a point-charge distribution is assumed for
the constituents of the projectile and target clusters, the total-electric
interaction Hamiltonian is written as a local scalar field coupling [Boh69,
Ald75] integrated over the nuclear volumes:

HE(t) =

∫

τPb

∫

τO

ρPb(~r2) ρO(~r1)∣∣∣~R(t) + ~r1 − ~r2

∣∣∣
dτO dτPb , (2.30)

where ~r1(r1, θ1, φ1) defines a position in the 16O centre-of-mass frame
and ~r2(r2, θ2, φ2), a position in the 208Pb centre-of-mass frame. τO and
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τPb refer to the 16O and 208Pb nuclear volumes, respectively. ~R(R, θ, φ, t)
is the vector between the centres of mass of lead and oxygen. ρO(~r1) is
the charge density in the projectile and ρPb(~r2) is the charge density
in the target, each of them being described by a point-charge nucleon
distribution, given by ρ(~r) =

∑A
k=1 ek δ(~r − ~rk), where δ is the Dirac

delta-function and ek and ~rk are the charge and position of the kth nu-
cleon (see fig. 2.4).

Assuming that the nuclei do not interpenetrate (which implies the
condition r1 + r2 < R), the denominator in eq. 2.30 is expanded into

multipole components. The monopole-monopole (~R) and multipole-

monopole (~R − ~r2) terms do not give rise to excitation in the projec-
tile but only influence the relative motion since they do not depend

208Pb

16O
r 1

R

r
1

+
R

+
R

-
r

1
r

2

r 2

Figure 2.4: The electric interaction can be described as a scalar field
coupling between each point-charge constituent of the target and of the
projectile (~R + ~r1 − ~r2). The monopole-multipole interaction in 16O is
the coupling between the monopole term of the target distribution and
the multipole terms of the projectile (~R + ~r1).
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on the projectile nuclear internal degrees of freedom. Therefore, they
are responsible for the non-perturbative electric Hamiltonian H(0)

E (elas-
tic scattering). Moreover, consistently with the first-order perturbation

theory, the high-order multipole-multipole terms (~R+~r1−~r2) can be ne-

glected [Ald75]. Therefore, only the monopole-multipole (~R + ~r1) terms
are considered [Boh69] and the first-order electric-transition Hamiltonian
can be expanded into spherical-tensor components as follows:

H(1)
E (t) = 4πZPb e

∞∑

l=1

+l∑

m=−l

1

2l + 1

Ylm(r̂(t))

R(t)l+1

∫

τO

ρ(~r1) rl
1 Y∗lm(r̂1) dτO, (2.31)

where Ylm are the normalised spherical harmonics.
Inserting the electric multipole moment defined by eq. 2.12 with

eq. 2.31 into eq. 2.29 and making use of the property Y∗lm = (−1)m Yl −m,
the electric transition amplitude can be expressed in the form

aexc
E =

4πZPb e

i~
∑

l>0 m

(−1)m

2l + 1
〈ψO∗|MEl −m |ψO〉 SElm(ω) , (2.32)

where the Coulomb-orbital integrals containing the dynamical informa-
tion are defined as

SElm(ω) =

∫ +∞

−∞

eiωt

R(t)l+1
Ylm(r̂(t)) dt . (2.33)

The moment includes the structure information, i.e. position, velocity
and spin of the nucleons and contains the isoscalar and isovector contri-
butions.

Analogous to the electric interaction, the total magnetic-interaction
Hamiltonian can be described by vector-field coupling [Ald56]:

HM(t) = − 1

c2

∫

τPb

∫

τO

~O(~r1) · ~Pb(~r2)∣∣∣~R(t) + ~r1 − ~r2

∣∣∣
dτO dτPb , (2.34)

where ~O and ~Pb are the projectile and target current densities, re-
spectively. Expanding the monopole-multipole elements, the first-order
magnetic-transition Hamiltonian is written [Ald56]
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H(1)
M (t) = −4πZPb e

c2

∞∑

l=1

+l∑

m=−l

1

l(2l + 1)(l + 1)
×

Ylm(r̂(t))

R(t)l+1

∫

τO

~L · ~V ~L1 · ~O(~r1) rl
1 Y∗lm(r̂1) dτO , (2.35)

where ~L = −i(−~R)×~∇ is the angular-momentum operator acting on the

target and ~L1 = −i ~r1 × ~∇ is that acting on the projectile constituents.
Inserting the magnetic multipole moment as defined in eq. 2.13, the
magnetic transition amplitude has a form analogous to the electric one:

aexc
M =

4πZPb e

i~
∑

l>0 m

(−1)m

2l + 1
〈ψO∗|MMl −m |ψO〉 SMlm(ω) , (2.36)

with

SMlm(ω) =
i

c

∫ +∞

−∞
~L · ~V 1

l

eiωt

R(t)l+1
Ylm(r̂(t)) dt . (2.37)

Therefore, the transition amplitude can be split such that a1 =∑
lm aexc

Elm + aexc
Mlm. Thus, the transition probabilities can be expressed

according to the various l channels:

dP exc
Πl

dE
=

∑
m

|aexc
Πlm|2 . (2.38)

Note that the 16O ground state is spinless thus the spin of the final
state equals l. In a more general case the probability is summed over
all initial and final magnetic substates rather than over subchannels m,
and averaged over the number of initial substates.

The differential cross section for a given multipolarity can now be
written

d2σexc
Πl

dΩdE
(E∗, Θ) =

dσR

dΩ
(Θ)

dP exc
Πl

dE
(E∗, Θ) . (2.39)
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Relativistic treatment

For relativistic collisions (v ' c), the straight-line approximation, which
consists in neglecting the deviation of the projectile (see fig. 2.5), can
be applied. The treatment is parallel to that of the non-relativistic case
and has been described in detail by Winther and Alder [Win78] and is
summarised below.

In the coordinate system centred on 208Pb nucleus, and having ~R +
~r1 = ~x+~y+~z, the Lienard-Wiechert relativistic Coulomb field produced
by 208Pb is given by [Jac75]

ϕ(~R + ~r1, t) =
γZPb e√

(b− x)2 + y2 + γ2(z − V t)2
, (2.40)

and the vector potential is

~A(~R + ~r1, t) =
~V

c
ϕ(~R + ~r1, t) . (2.41)

The Fourier transform of ϕ gives the frequency spectrum at the posi-
tion ~R + ~r1:

ϕ(~R + ~r1, ω) =
2ZPb e

V
ei ω

V
z K0

(
ω

γV

√
(x− b)2 + y2

)
, (2.42)

where K0 is the modified Bessel function. This can be written in spher-
ical tensor elements as follows:

ϕ(~R + ~r1, ω) =
∑

lm

Wlm(~R + ~r1, ω) Y∗lm(R̂ + r̂1) , (2.43)

where

Wlm(~R + ~r1, ω) =

∫

4π

ϕ(~R + ~r1, ω) Ylm(R̂ + r̂1) dΩ . (2.44)

This quantity can be analytically calculated and permits to find the elec-
tric and magnetic Hamiltonians from eqs. 2.30 and 2.34. Once inserted
in eq. 2.29, the transition amplitudes can be written [Win78, Ber88]

aexc
Πlm = −i (−1)m ZPb e

~γV

√
2l + 1

(ω

c

)l

×

GΠlm

( c

V

)
Km

(
ωb

γV

)
〈ψO∗|MΠl −m |ψO〉 , (2.45)
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Figure 2.5: For relativistic energies, the straight-line approximation
neglects the projectile trajectory deflection when passing by the target.
For intermediate energies, this approximation must take into account a
field overestimation by replacing the impact parameter b by a corrected
larger value b′.

where GΠlm is a Gegenbauer integral (or Winther-Alder relativistic func-
tion, given in [Win78]) and Km is a modified Bessel function. For inter-
mediate energies, the projectile slightly deviates from the straight-line
trajectory description and is on the average further away from the target.
The field overestimation is then compensated by replacing the impact
parameter by the corrected value b′ = b + πD/2γ.

Excitation probabilities

The excitation differential cross section is given in eq. 2.39, by inserting
eq. 2.45 into eq. 2.38:

dP exc
Πl

dE
=

(
ZPb e

~γV

)2

(2l + 1)
(ω

c

)2l

×
∣∣∣∣∣
∑
m

(−1)m GΠlm

( c

V

)
Km(χ) 〈ψO∗ |MΠl −m |ψO〉

∣∣∣∣∣

2

, (2.46)

where χ = ωb′/γV .
It is now practical to introduce the reduced transition probability,

which contains all nuclear information, defined for a spinless ground
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state as

Bexc
Πl =

∑
m

|〈ψO∗|MΠlm |ψO〉|2 . (2.47)

This value is strongly model-dependent and, in practice, this is the un-
known that must be measured experimentally. Once Bexc

Πl has been in-
serted in eq. 2.46, the final expression of the transition probabilities is
written:

dP exc
Πl

dE
(E∗, Θ) =

(
ZPb e

~γV

)2

(2l + 1)
(ω

c

)2l

Bexc
Πl (E∗)×
∑
m

∣∣∣GΠlm

( c

V

)
Km(χ)

∣∣∣
2

. (2.48)

The explicit results of this expression are detailed in appendix A.1 for
each relevant multipolarity.

Detailed-balance theorem and photonuclear cross section

The 208Pb(16O,16O∗)208Pb cross section has been evaluated with respect
to the multipolarity, it is now necessary to express the cross section for
the interaction of the photon with the projectile.

The absorption probability of a photon by a nucleus can be estab-
lished in a symmetric way as the emission described in section 2.1.3,
focusing at incoming waves instead of outgoing ones. The photonuclear
cross section is then given by [Bla79]

σγ
Πl =

8π3(l + 1)

l(2l + 1)!!2

(
Eγ

~c

)2l−1

Bexc
Πl (Eγ) . (2.49)

Independently, this can be expressed very generally as follows:

σγ
Πl(Eγ) = πλ−2

γ

2l + 1

2
|〈ψO∗ |H2 |ψOγ〉 〈ψCα|H1 |ψO∗〉|2 , (2.50)

where λ−γ is the photon reduced wavelength and 1/2 is a statistical factor
due to the photon’s spin. The radiative-capture cross section described
in eq. 2.4 can be written in the form [Rol88]

σcap
Πl = πλ−2

Cα(2l + 1) |〈ψO∗|H1 |ψCα〉 〈ψOγ|H2 |ψO∗〉|2 , (2.51)
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where H1 and H2 are the capture and dissociation Hamiltonians, respec-
tively.

From eqs. 2.50 and 2.51, the time-reversal invariance principle per-
mits to write the photonuclear cross section σγ

Πl with respect to the
radiative-capture cross section σcap

Πl in the form of the detailed-balance
theorem:

σγ
Πl =

1

2

(
kCα

kγ

)2

σcap
Πl , (2.52)

where kCα =
√

2µε/~ and kγ are the wave numbers of the 12C+α system
and of the photon, respectively. For a general reaction a(b,γ)c, this
expression is multiplied by a statistical factor (2Ia+1)(2Ib+1)/(2Ic+1),
where Ia, Ib and Ic are the spins of the particles.

Eqs. 2.16 and 2.49 are introduced in the latter in order to write the
following relationship [Sri88]:

Bexc
Πl (Eγ) =

µε

π2~3
(2l + 1)Bcap

Πl (ε) , (2.53)

which gives the possibility to calculate the capture cross section from the
Coulomb-breakup measurements for reactions involving spin-0 particles.

Finally, for a resonant state of energy E∗, the integration of this
value over the total width Γ of the resonance gives the reduced transition
probability of excitation for this level:

BE∗
Πl = (2l + 1)

l(2l + 1)!!2

8π(l + 1)

(
~c
E∗

)2l+1

Γγ . (2.54)

Virtual-photon spectrum

The number of virtual photons present in the Coulomb field is, in prin-
ciple, given by the Fourier transform of the time-dependent electromag-
netic Hamiltonians [Jac75, Gol84], but it is easier to calculate it as fol-
lows. The differential excitation cross section can be written [Ber85]

dσexc
Πl

dΩ
(E∗, Θ) =

dNΠl

dΩ
(Eγ, Θ) σγ

Πl(Eγ)
1

Eγ

. (2.55)

Introducing eqs. 2.25, 2.48 and 2.49, one can write

dNΠl

dΩ
(Eγ, Θ)=

dσR

dΩ

Z2
Pb e2

b′2~c
l(2l + 1)!!2

8π3(l + 1)
χ2

∑
m

∣∣∣GΠlm

( c

V

)
Km(χ)

∣∣∣
2

. (2.56)
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The results of this formula are given in appendix A.2 for each relevant
multipolarity. The number of photons is plotted for each multipolarity
as a function of the projectile velocity V and of the photon energy Eγ

in fig. 2.6. This shows that the Coulomb excitation highly favours the
quadrupole contribution [Sho92], by a factor of about 50 compared to
that of the dipole at 80 MeV/u.

Angular correlation of the fragments

The previous calculation permits to find the double-differential cross
section for a given multipolarity, scattering angle, and excitation energy.
An angular correlation study requires to include the expansion of the
magnetic substates by modifying the expression of the cross section as

d3σexc
Πl

dE dΩ dΩcm

(E, Θ) =
dσR

dΩ

d2P exc
Πl

dE dΩcm

, (2.57)

where Ωcm is the solid angle where one of the fragments is emitted (see
fig. 2.7). The angles of the other fragment are given by θαcm = π−θCcm,
φαcm ≡ π +φCcm [2π]. For spinless particles, the dissociation probability
can be expressed as [Bau89]

d2P dis
Πl

dE dΩcm

=

∣∣∣∣∣
∑
m

aexc
Πlm Ylm(θcm, φcm)

∣∣∣∣∣

2

. (2.58)

The actual fragment angular correlation has to take account of the in-
terferences between the various multipolarities. This is described by a co-
herent sum of the probabilities with a mixing angle. It was shown [Red87,
Bau89, Tat95, Tat96] that, despite a low dipole strength, an important
interference effect appears in the continuum, which can be used to mea-
sure precisely the relative multipole contributions.

2.2.3 Nuclear effects and the optical model

Description of the model

It was already mentioned that the semiclassical description breaks down
when the 16O and 208Pb nuclei interpenetrate. In practice, the scatter-
ing angle range that allows the use of the semiclassical approximation
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Figure 2.6: The top figure displays 7.16 MeV-photon intensities per
unit solid angle at 15 fm impact parameter for E2, M2, E1 and M1
multipolarities (from top to bottom, respectively) as functions of the
relative energy between the projectile and target nuclei. The bottom
figure is the virtual-photon spectrum for each of these multipolarities at
80 MeV/u relative energy. The region of interest is shown by the double
arrow, between 7.16 and 11.52 MeV.
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Figure 2.7: Definition of the angles used for the triple-differential cross
section. For clarity, the nuclei are shown in the plane φ ≡ 0 [π].

is narrow (a few degrees) [Ber85]. Therefore, it is necessary to use a
quantum-mechanical approach where the system is described by a wave
function in a Coulomb plus nuclear potential. In the optical model, the
Schrödinger equation is solved by expanding the wave function in par-
tial waves. The Hamiltonian has a spherical average potential, which
includes the Coulomb field as well as a nuclear field, the latter being
composed of a real part and an imaginary part. This method has been
shown to describe elastic scattering very accurately.

Excited nuclear systems are known to be well represented by a col-
lective model [Tam65] that describes the excitation process by inducing
a collective surface vibration of an incompressible (at low excitation
energy) liquid drop, or a rotation. The vibration or the rotation is
time-averaged so that the nucleus is described by a deformed potential.
In spite of certain ambiguities, the deformed optical-potential model is
known to provide a good description of the phenomenological inelastic
scattering process [Jac70, Sat83].

The surface of the spherical drop satisfies the equations of hydrody-
namics, the solution of which gives the sum of the waves in the form

R(θ, φ, t) = R0

(
1 +

+∞∑

l=2

+l∑

m=−l

αlm Y∗lm(θ, φ)

)
, (2.59)

where R0 = RPb + RO is the radius of the static potential, Ylm is a
spherical harmonic and αlm is the dynamical amplitude operator of the
corresponding phonon characterising the displacement of the drop sur-
face for the given multipolarity. Note that the sum begins with l = 2
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because a monopole vibration would correspond to a density oscillation
(which is possible only at high excitation energies because of the large
nuclear incompressibility), while a dipole vibration is unphysical since
this would correspond to a spurious centre-of-mass motion.

The 16O and 208Pb nuclei interact via a complex Coulomb-nuclear
potential U = V + W + iW ′, where V is the mean Coulomb potential
and W and W ′ are the real and imaginary parts of the mean nuclear
potential. The nucleon density is written in the form

ρ(r, θ, φ) =
ρ0

1 + e
r−R(θ,φ)

a

, (2.60)

where R is the nuclear radius given by eq. 2.59, a is the diffuseness and ρ0

is a normalisation factor. Therefore, the Coulomb potential is given by

V (r, θ, φ) =
1

r

∫

τ

ρ(r′, θ, φ) e2 dτ , (2.61)

where τ is the nuclear volume. The nuclear potential is assumed to have
a Woods-Saxon form:

W (r, θ, φ) = − W0

1 + e
r−RW (θ,φ)

aW

, (2.62)

where RW is the potential radius given by eq. 2.59, aW is the diffuse-
ness and W0 is the well depth. These are experimentally determined
by fitting the measured elastic scattering cross section to optical-model
calculations with the given nuclear optical potential. W ′ has a similar
form with parameters RW ′ , aW ′ and W ′

0. For a small deformation, each
potential can be expanded in Taylor series near the static radius R0U

such that

U(r, RU) = U(r,R0U) + (RU −R0U)
dU(r,R0U)

dRU

+ ... , (2.63)

where U can be V , W or W ′. The first term is the static (spherical)
optical interaction potential that scatters particles elastically while the
second is the first-order transition potential.

Inserting eq. 2.59 in the latter, the first-order transition potential
from the ground state to the state |l〉 can then be written in the form

〈l|Ul(r, RU) |0〉 =
βlUR0U√

2l + 1

dU(r,R0U)

dRU

, (2.64)
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Table 2.1: Parameters of the optical potential determined by
Roussel-Chomaz et al. [Rou88] from fitting elastic scattering data of
208Pb(16O,16O)208Pbat 94 MeV/u. Note that R0W = R0W ′ and aW =
aW ′ .

W0 (MeV) R0W (fm) aW (fm) W ′
0 (MeV) R0W ′ (fm) aW ′ (fm)

80 9.053 0.718 51.6 9.053 0.718

where βlU is the deformation parameter, i.e. the amplitude of the time-
averaged global oscillation for the multipolarity l. If this equation ac-
tually generates one deformation parameter for each potential, in prac-
tice the deformation lengths are assumed to be equal [Sat83] so that
βlVR0V = βlWR0W = βlW ′R0W ′ . The complex Coulomb-nuclear transi-
tion potential from the ground state to the state |l〉 can thus be written

〈l| Ul(r, RV , RW , RW ′) |0〉 =

βlR0√
2l + 1

(
dV (r,R0V )

dRV

+
dW (r, R0W )

dRW

+
dW ′(r, R0W ′)

dRW ′

)
. (2.65)

The parameters of the optical potential have been determined from fit-
ting elastic scattering data of 16O on 208Pb obtained at 94 MeV/u by
Roussel-Chomaz et al. [Rou88]. These are listed in table 2.1. It can be
reasonably assumed that the neutron and proton nuclear distributions
are similar. Thus, the same radius R0 is used for the Coulomb potential,
and hence also the same βl.

Angular distribution of 16O∗

Given the transition potential of eq. 2.65, the solution of the Schrödinger
equation is obtained in the framework of coupled equations [Tam65]. The
wave function |ψ〉 is expanded in l + 1 partial waves, and the resulting
system of equations is solved for the radial wave-function components of
each of them.

This calculation is performed by sequential iterations with the ECIS
code [Ray71]. If the calculation is stopped after one iteration, this would
correspond to a DWBA calculation. For a given transition from a state
|Ii〉 to a state |If〉, where Ii and If are the spins of these states, ECIS
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computes every possible lm channel with the usual parity restrictions.
This is performed for all entrance angular momenta from L = 0 to a
‘sufficiently’ large value. This leads to the exit channels L′M ′ such that
~L′ = ~L−~l, with ~l = ~If − ~Ii is the transferred angular momentum. The
output file contains the scattering-matrix (or S-matrix) elements as well
as the differential cross sections given for the corresponding scattering-
angle range.

The total multipole moment for a vibrational phonon state |l〉 with
vibrational deformation parameter βl is given by [Sat83]

∑
m

MΠlm =
βl√

2l + 1

∫
R0

dρ(r, RO)

dR0

rl+2 dr . (2.66)

The reduced transition probability BE∗
Πl , from the ground state to an ex-

cited state of energy E∗, defined in eq. 2.47, can now be expressed making
use of eq. 2.66 as a function of the deformation parameter as [Sat83]

BE∗
Πl =

∣∣∣∣
1

4π
(l + 2)βlZOR0

〈
rl−1

〉∣∣∣∣
2

e2 . (2.67)

The calculations were done for the 2+ states at 9.84 and 11.52 MeV
with the input files given in appendix B. The reduced transition prob-
abilities BE∗

E2 are computed from eq. 2.54 with the resonance widths
tabulated in [Ajz86]. Consequently, the deformation parameters β2 are
calculated from eq. 2.67. The result of the DWBA calculation for the
state at 11.52 MeV, with the transition potential and deformation pa-
rameter determined as described above, is plotted in fig. 2.8. The differ-
ential cross section displays a pattern that is sensitive to the interference
between the Coulomb and nuclear amplitudes. The comparison with the
semiclassical model calculations show that the latter is consistent with
the Coulomb part of the DWBA calculation in terms of the integrated
cross section. These agree with each other within 2%.

The 2+ state at 9.84 MeV is known to be populated via a coupling
with the 2+ state at 6.92 MeV [Har76]. Therefore, coupled-channel cal-
culations involving these states are necessary to calculate the differential
cross section for the state at 9.84 MeV. This shows a typical offset when
compared to the calculation with a one-step direct excitation from the
ground state.
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Figure 2.8: DWBA calculation performed with ECIS [Ray71]. The
figure displays for the scattering of an 16O projectile from a 208Pb target
at 80 MeV/u the total nuclear-Coulomb (solid line) differential cross
section in comparison with those of pure nuclear (dotted line) and pure
Coulomb (dashed line) excitation of the 2+ resonance at 11.52 MeV.
A destructive interference between Coulomb and nuclear amplitudes is
clearly visible in the angular range 2.4◦–3.2◦. For comparison, the dash-
dotted line is the semiclassical calculation with a cut at the grazing
angle. The integrated semiclassical cross section is the same as that of
the Coulomb part of the optical model within 2%. Calculations for the
same multipolarity at other energies show nearly an identical shape for
the differential cross section.
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Both states show an important destructive interference of the nuclear
and Coulomb interactions visible between 2◦ and 3◦. This is precious
information to test the validity of the model and the accuracy of the
description of both contributions and of their relative strength.

The folded-potential model approach

In comparison with the deformed-potential model, which is of a phe-
nomenological nature, the folded-potential model is a theoretically more
descriptive approach. While in the former, the potential is determined
by fitting elastic-scattering data, the folded potential is built by explic-
itly folding the nucleon-nucleon interaction over the target and projectile
density distributions. The transition potential analogous to that given
by eq. 2.64 is written in the form [Bee96]

〈l|Gl(r) |0〉 =

∫
gl(r

′)v̄l(r, r
′)r′2dr′ , (2.68)

where gl is the transition density and v̄l is the 2l component of the
nucleon-nucleon interaction averaged over the ground-state density dis-
tribution. gl is given, like for the deformed potential, by

gl(r) =
βlUR0U√

2l + 1

dρ(r)

dr
. (2.69)

An ECIS calculation was performed with the folded potential for the
2+ resonance at 11.52 MeV [Kie02]. The result is plotted in fig. 2.9 com-
pared to the result of the deformed-potential model calculation presented
in the previous section. The general shape is similar for both models, but
the cross section from the folded-potential model is lower by roughly 50
to 80% compared to the one from the deformed-potential model. There
is also a phase shift of the order of 0.2◦, and the interference pattern is
clearly identifiable.

Angular correlation of the fragments

The 16O∗ m-substate population directly determines the angular correla-
tion of the fragments in their centre of mass. It has been shown [Bau89,
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Figure 2.9: Comparison of ECIS calculations with a deformed poten-
tial (solid line) and a folded potential (dashed line) for the 2+ state
at 11.52 MeV. They include both nuclear and Coulomb interfering con-
tributions. They show an important cross-section discrepancy, and a
small phase shift.

Tat95, Tat96] that the angular correlation of the fragments is very sen-
sitive to the interferences between the contributions of the various mul-
tipolarities involved in the excitation process. Therefore, this observable
is a powerful tool to separate the contributions of the different multipoles
from one another.

ECIS solves the Schrödinger equation for each m substate for the
given transferred angular momentum l, and computes every scattering-
matrix element Slm. It is then straightforward to calculate the integrated
m-substate population of 16O and thus the fragment angular-correlation
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Figure 2.10: Angular correlations of the fragments in the centre of
mass, calculated from the S-matrix elements computed with ECIS. The
left figure displays the two-dimensional correlation calculated for the 2+

state at 11.52-MeV. The solid lines in the right figures are the normalised
projections of the left one on the θcm and φcm axes. For comparison, the
right figures also show the angular correlation for a 1− state (dashed
lines).

function that can be written in the form [Sat83]

Wl(θ, φ) =
∑
m

Alm(k̂C , k̂α)

(
4π

2l + 1

) 1
2

Ylm(θ, φ) , (2.70)

where the factor before the harmonics is a normalisation factor.
Fig. 2.10 shows the results of a calculation for the typical E2 angular

correlation of the state at 11.52 MeV, and compares it to an E1 corre-
lation. It appears clearly that the correlation of the fragments strongly
characterises the multipolarity of the excitation.
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