716 research outputs found

    Gastrointestinal Stromal Tumours: An Update

    Get PDF

    Minimum Information about a Neuroscience Investigation (MINI) Electrophysiology

    Get PDF
    This module represents the formalized opinion of the authors and the CARMEN consortium, which identifies the minimum information required to report the use of electrophysiology in a neuroscience study, for submission to the CARMEN system (www.carmen.org.uk).
&#xa

    Clergy work-related satisfactions in parochial ministry: the influence of personality and churchmanship

    Get PDF
    The aim of this study was to test several hypotheses that clergy work-related satisfaction could be better explained by a multidimensional rather than a unidimensional model. A sample of 1071 male stipendiary parochial clergy in the Church of England completed the Clergy Role Inventory, together with the short-form Revised Eysenck Personality Questionnaire. Factor analysis of the Clergy Role Inventory identified five separate clergy roles: Religious Instruction, Administration, Statutory Duties (conducting marriages and funerals), Pastoral Care, and Role Extension (including extra-parochial activities). Respondents also provided an indication of their predispositions on the catholic-evangelical and liberal-conservative dimensions. The significant associations of the satisfactions derived from each of the roles with the demographic, personality, and churchmanship variables were numerous, varied, and, with few exceptions, small in magnitude. Separate hierarchical regressions for each of the five roles indicated that the proportion of total variance explained by churchmanship was, in general, at least as great as that explained by personality, and was greater for three roles: Religious Instruction, Statutory Duties, and Role Extension. It was concluded that clergy satisfactions derived from different roles are not uniform and that churchmanship is at least as important as personality in accounting for clergy work satisfaction

    Design space exploration and optimization of path oblivious RAM in secure processors

    Get PDF
    Keeping user data private is a huge problem both in cloud computing and computation outsourcing. One paradigm to achieve data privacy is to use tamper-resistant processors, inside which users' private data is decrypted and computed upon. These processors need to interact with untrusted external memory. Even if we encrypt all data that leaves the trusted processor, however, the address sequence that goes off-chip may still leak information. To prevent this address leakage, the security community has proposed ORAM (Oblivious RAM). ORAM has mainly been explored in server/file settings which assume a vastly different computation model than secure processors. Not surprisingly, naïvely applying ORAM to a secure processor setting incurs large performance overheads. In this paper, a recent proposal called Path ORAM is studied. We demonstrate techniques to make Path ORAM practical in a secure processor setting. We introduce background eviction schemes to prevent Path ORAM failure and allow for a performance-driven design space exploration. We propose a concept called super blocks to further improve Path ORAM's performance, and also show an efficient integrity verification scheme for Path ORAM. With our optimizations, Path ORAM overhead drops by 41.8%, and SPEC benchmark execution time improves by 52.4% in relation to a baseline configuration. Our work can be used to improve the security level of previous secure processors.National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipUnited States. Defense Advanced Research Projects Agency (Clean-slate design of Resilient, Adaptive, Secure Hosts Contract N66001-10-2-4089

    Soft Tissue Tumors Characterized by a Wide Spectrum of Kinase Fusions Share a Lipofibromatosis-like Neural Tumor Pattern

    Get PDF
    Gene fusions resulting in oncogenic activation of various receptor tyrosine kinases, including NTRK1-3, ALK, and RET, have been increasingly recognized in soft tissue tumors (STTs), displaying a wide morphologic spectrum and therefore diagnostically challenging. A subset of STT with NTRK1 rearrangements were recently defined as lipofibromatosis-like neural tumors (LPFNTs), being characterized by mildly atypical spindle cells with a highly infiltrative growth in the subcutis and expression of S100 and CD34 immunostains. Other emerging morphologic phenotypes associated with kinase fusions include infantile/adult fibrosarcoma and malignant peripheral nerve sheath tumor-like patterns. In this study, a large cohort of 73 STT positive for various kinase fusions, including 44 previously published cases, was investigated for the presence of an LPFNT phenotype, to better define the incidence of this distinctive morphologic pattern and its relationship with various gene fusions. Surprisingly, half (36/73) of STT with kinase fusions showed at least a focal LPFNT component defined as >10%. Most of the tumors occurred in the subcutaneous tissues of the extremities (n = 25) and trunk (n = 9) of children or young adults (<30 years old) of both genders. Two-thirds (24/36) of these cases showed hybrid morphologies with alternating LPFNT and solid areas of monomorphic spindle to ovoid tumor cells with fascicular or haphazard arrangement, while one-third (12/36) had pure LPFNT morphology. Other common histologic findings included lymphocytic infiltrates, staghorn-like vessels, and perivascular or stromal hyalinization, especially in hybrid cases. Mitotic activity was generally low (<4/10 high power fields in 81% cases), being increased only in a minority of cases. Immunoreactivity for CD34 (92% in hybrid cases, 89% in pure cases) and S100 (89% in hybrid cases, 64% in pure cases) were commonly present. The gene rearrangements most commonly involved NTRK1 (75%), followed by RET (8%) and less commonly NTRK2, NTRK3, ROS1, ALK, and MET

    Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging—A Parallel Processing Perspective

    Get PDF
    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 × 23 × 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time

    A Novel NFIX-STAT6 Gene Fusion in Solitary Fibrous Tumor: A Case Report

    Get PDF
    Solitary fibrous tumor is a rare subtype of soft-tissue sarcoma with a wide spectrum of histopathological features and clinical behaviors, ranging from mildly to highly aggressive tumors. The defining genetic driver alteration is the gene fusion NAB2–STAT6, resulting from a paracentric inversion within chromosome 12q, and involving several different exons in each gene. STAT6 (signal transducer and activator of transcription 6) nuclear immunostaining and/or the identification of NAB2–STAT6 gene fusion is required for the diagnostic confirmation of solitary fibrous tumor. In the present study, a new gene fusion consisting of Nuclear Factor I X (NFIX), mapping to 19p13.2 and STAT6, mapping to 12q13.3 was identified by targeted RNA-Seq in a 74-year-old female patient diagnosed with a deep-seated solitary fibrous tumor in the pelvis. Histopathologically, the neoplasm did not display nuclear pleomorphism or tumor necrosis and had a low proliferative index. A total of 378 unique reads spanning the NFIXexon8–STAT6exon2 breakpoint with 55 different start sites were detected in the bioinformatic analysis, which represented 59.5% of the reads intersecting the genomic location on either side of the breakpoint. Targeted RNA-Seq results were validated by RT-PCR/ Sanger sequencing. The identification of a new gene fusion partner for STAT6 in solitary fibrous tumor opens intriguing new hypotheses to refine the role of STAT6 in the sarcomatogenesis of this entity

    Undifferentiated round cell sarcoma with BCOR internal tandem duplications (ITD) or YWHAE fusions:a clinicopathologic and molecular study

    Get PDF
    Until recently, undifferentiated round cell sarcomas (URCS) in infants have been considered a wastebasket diagnosis, composed of various pathologic entities and lacking consistent genetic alterations. The recent identification of recurrent BCOR internal tandem duplications (ITD) and less common alternative YWHAE\u2013NUTM2B/E fusions in half of infantile URCS and the majority of so-called primitive myxoid mesenchymal tumors of infancy (PMMTI) suggests a common pathogenesis with clear cell sarcoma of the kidney which also harbors the same genetic alterations. These tumors also share a similar morphology and immunoprofile, including positivity for BCOR, cyclin D1, and SATB2. In this study, we investigate the largest cohort to date of genetically confirmed URCS and PMMTI with BCOR ITD or YWHAE fusions to better define their morphologic spectrum and clinical behavior. Twenty-eight cases harbored BCOR ITD and five YWHAE fusions, occurring in 29 infants and 4 children, 19 males and 14 females. Microscopically, 20 were classified as URCS and 13 as PMMTI. Follow-up was available in 25 patients, with 14 (56%) succumbing to their diseases at a mean duration of 18-months follow-up (range: 2\u201362). Six patients remained with no evidence of disease at a mean follow-up of 63 months (range: 4\u2013192), four patients were still alive with disease (mean follow-up: 46 months, range: 4\u2013120), and one died of other causes. Local recurrence and distant metastasis were each observed in 11/25 (44%) of the patients. The overall survival was 42% at 3 years and 34% at 5 years (median survival: 26 months). There was no statistically significant survival difference between cases diagnosed as URCS and PMMTI and between those with BCOR ITD and YWHAE fusions
    corecore