1,462 research outputs found

    The impact of mass extinctions

    Get PDF
    In the years since Snowbird an explosive growth of research on the patterns, causes, and consequences of extinction was seen. The fossil record of extinction is better known, stratigraphic sections were scrutinized in great detail, and additional markers of environmental change were discovered in the rock record. However flawed, the fossil record is the only record that exists of natural extinction. Compilations from the primary literature contain a faint periodic signal: the extinctions of the past 250 my may be regulary spaced. The reality of the periodicity remains a subject for debate. The implications of periodicity are so profound that the debate is sure to continue. The greater precision from stratigraphic sections spanning extinction events has yet to resolve controversies concerning the rates at which extinctions occurred. Some sections seem to record sudden terminations, while others suggest gradual or steplike environmental deterioration. Unfortunately, the manner in which the strata record extinctions and compile stratigraphic ranges makes a strictly literal reading of the fossil record inadvisable. Much progress was made in the study of mass extinctions. The issues are more sharply defined but they are not fully resolved. Scenarios should look back to the phenomena they purport to explain - not just an iridium-rich layer, but the complex fabric of a mass extinction

    Costing of diabetes mellitus type II in Cambodia

    Get PDF
    Background: Diabetes Mellitus Type II (T2DM) is a major and growing medical, social and economic burden in the East-Asian country of Cambodia. However, no economic modelling has been done to predict the number of cases and the budget impact. Objective: This paper forecasts the epidemiological and economic consequences of T2DM in Cambodia. The Ministry of Health and related donor agencies are supported to select the most cost-effective interventions against the disease. At the same time this paper demonstrates the relevance and potential of health economic modelling for least developed countries. Methods: We developed a Markov-Model for the specific situation of Cambodia. Data was taken from the scientific literature, grey literature in Cambodia and key-informant interviews. Results: The number of people living with T2DM is steadily increasing from 145,000 in the year 2008 to 264,000 in the year 2028 (+82 %). In the year 2008 the diagnosed T2DM patients would incur costs of some 2 million UStocoverallofdiabetestreatment.57 to cover all of diabetes treatment. 57 % of this amount would have to be spent for OAD-therapy, the rest for insulin therapy. In the year 2028 this amount will have grown to some 4 million US. If all patients (incl. non-diagnosed) had to be paid-for the respective figure would be 5.5 million and 11 million US$. Screening for T2DM is only cost-effective if the sensitivity of the test is high while the unit price is low. The results of this simulation call for targeting the high-risk groups. However, an increased availability of Oral Anti-Diabetic and Insulin Therapy is highly cost-effective. Discussion: Type 2 Diabetes Mellitus is a major public health challenge in Cambodia. The simulations clearly indicate that prevention and treatment of this disease is highly cost-effective. However, not everything that is cost-effective might be affordable in Cambodia. This country will require external support to ease the growing burden of T2DM

    Numerical Efficiency of Inverse Simulation Methods Applied to a Wheeled Rover

    Get PDF
    Extending the navigational capability of planetary rovers is essential for increasing the scientific outputs from such exploratory missions. In this paper a navigation method based on Inverse Simulation is applied to a four wheel rover. The method calculates the required control inputs to achieve a desired, specified response. Here this is a desired trajectory defined as a series of waypoints. Inverse Simulation considers the complete system dynamics of the rover to calculate the control input using an iterative, numerical Newton - Raphson scheme. The paper provides an insight into the numerical parameters that affect the performance of the method. Also, the influence of varying the timestep and the convergence tolerance is examined in terms of the quality of the calculated control input and the resulting trajectory, as well as the execution time. From this analysis a set of parameters and recommendations to successfully apply Inverse Simulation to a rover is presented

    Comparison of nonlinear dynamic inversion and inverse simulation

    Get PDF
    No abstract available

    Inverse Simulation as a Tool for Fault Detection and Isolation in Planetary Rovers

    Get PDF
    With manned expeditions to planetary bodies beyond our own and the Moon currently intractable, the onus falls upon robotic systems to explore and analyse extraterrestrial environments such as Mars. These systems typically take the form of wheeled rovers, designed to navigate the difficult terrain of other worlds. Rovers have been used in this role since Lunokhod 1 landed on the Moon in 1970. While early rovers were remote controlled, communication latency with bodies beyond the Moon and the desire to improve mission effectiveness have resulted in increasing autonomy in planetary rovers. With an increase in autonomy, however, comes an increase in complexity. This can have a negative impact on the reliability of the rover system. With a fault-free system an unlikely prospect and human assistance millions of miles away, the rover must have a robust fault detection, isolation and recovery (FDIR) system. The need for comprehensive FDIR is demonstrated by the recent Chinese lunar rover, Yutu (or “Jade Rabbit”). Yutu was rendered immobile 42 days after landing and remained so for the duration of its operational life: 31 months. While its lifespan far exceeded its expected value, Yutu's inability to move severely impaired its ability to perform its mission. This clearly highlights the need for robust FDIR. A common approach to FDIR is through the generation and analysis of residuals. Output residuals may be obtained by comparing the outputs of the system with predictions of those outputs, obtained from a mathematical model of the system which is supplied with the system inputs. Output residuals allow simple detection and isolation of faults at the output of the system. Faults in earlier stages of the system, however, propagate through the system dynamics and can disperse amongst several of the outputs. This problem is exemplified by faults at the input, which can potentially excite every system state and thus manifest in every output residual. Methods exist for decoupling and analysing output residuals such that input faults may be isolated, however, these methods are complex and require comprehensive development and testing. A conceptually simpler approach is presented in this paper. Inverse simulation (InvSim) is a numerical method by which the inputs of a system are obtained for a desired output. It does so by using a Newton-Raphson algorithm to solve a non-linear model of the system for the input. When supplied with the outputs of a fault-afflicted system, InvSim produces the input required to drive a fault-free system to this output. The fault therefore manifests itself in this generated input signal. The InvSim-generated input may then be compared to the true system input to generate input residuals. Just as a fault at an output manifests itself in the residual for that output alone, a fault at an input similarly manifests itself only in the residual for that input. InvSim may also be used to generate residuals at other locations in the system, by considering distinct subsystems with their own inputs and outputs. This ability is tested comprehensively in this paper. Faults are applied to a simulated rover at a variety of locations within the system structure and residuals generated using both InvSim and conventional forward simulation. Residuals generated using InvSim are shown to facilitate detection and isolation of faults in several locations using simple analyses. By contrast, forward simulation requires the use of complex analytical methods such as structured residuals or adaptive thresholds

    Efficiency of primary care in rural Burkina Faso: A two-stage DEA analysis

    Get PDF
    Background: Providing health care services in Africa is hampered by severe scarcity of personnel, medical supplies and financial funds. Consequently, managers of health care institutions are called to measure and improve the efficiency of their facilities in order to provide the best possible services with their resources. However, very little is known about the efficiency of health care facilities in Africa and instruments of performance measurement are hardly applied in this context. Objective: This study determines the relative efficiency of primary care facilities in Nouna, a rural health district in Burkina Faso. Furthermore, it analyses the factors influencing the efficiency of these institutions. Methodology: We apply a two-stage Data Envelopment Analysis (DEA) based on data from a comprehensive provider and household information system. In the first stage, the relative efficiency of each institution is calculated by a traditional DEA model. In the second stage, we identify the reasons for being inefficient by regression technique. Results: The DEA projections suggest that inefficiency is mainly a result of poor utilization of health care facilities as they were either too big or the demand was too low. Regression results showed that distance is an important factor influencing the efficiency of a health care institution Conclusions: Compared to the findings of existing one-stage DEA analyses of health facilities in Africa, the share of relatively efficient units is slightly higher. The difference might be explained by a rather homogenous structure of the primary care facilities in the Burkina Faso sample. The study also indicates that improving the accessibility of primary care facilities will have a major impact on the efficiency of these institutions. Thus, health decision-makers are called to overcome the demand-side barriers in accessing health care

    Cost of dialysis in Tanzania: Evidence from the provider's perspective

    Get PDF
    Background: Although End Stage Renal Disease (ESRD) is a disease of increasing epidemiological relevance very little is known about the cost of providing the respective dialysis services in Tanzania. This paper estimates the costs of dialysis for ESRD patients at Muhimbili National Hospital (MNH) in Tanzania in the year 2014. Methods: Cost calculations are based on the provider perspective and include only the direct cost of dialysis treatment. Cost of drugs and consumables were obtained from the price list issued by the Medical Stores Department (MSD) in Tanzania. Additional data were collected through face-to-face interview with experts at the dialysis unit. Results: MNH performs on average 442 hemodialysis per month (34 patients, with three sessions per week) with a personnel placement of 20 nurses, four nephrologists, eight registrars, one nutritionist, two biomedical engineers, four health attendants and nine dialysis machines. The respective average unit cost per hemodialysis is 176 US.Consequently,anaveragepatientrequiringthreedialysesperweek(i.e.156dialysesperyear)willcauseannualcostsof27,440US. Consequently, an average patient requiring three dialyses per week (i.e. 156 dialyses per year) will cause annual costs of 27,440 US. Conclusion: The cost of dialysis is enormous for a least developed country like Tanzania where resources and technology are rather limited. Thus, from the economic point of view, it seems rational to allocate health care budgets towards diseases that are curable, have a higher cost-effectiveness and cater for the majority of the population. However, before a final decision on allocation of budgets towards dialysis is made all effort must be invested to improve technical efficiency by cutting the enormous unit cost

    A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

    Get PDF
    Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing \textit{input} residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances

    Wann fährt man schon 30 km/h in 30 km/h-Zonen?

    Get PDF
    Dieses Experiment dient der Untersuchung des Fahrverhaltens von Kraftfahrzeugführern in Abhängigkeit von Gestaltungsmerkmalen der jeweiligen Straßenverkehrssituation. Schwerpunktmäßig wird der Einfluß von Gestaltungsmerkmalen, insbesondere auch von Maßnahmen zur Geschwindigkeitsreduktion, auf die Fahrgeschwindigkeiten untersucht. Die Versuchspersonen "durchfahren" im Videosimulator eine Fahrstrecke mit verschiedenen Verkehrssituationen. Die Unterschiede in den Situationen bestehen zum einen in der straßenbaulichen Gestaltung, zum anderen in situativen statischen und dynamischen Kennzeichen der Verkehrsszenen. Die Versuchspersonen können mit der Bedienung des Gas- und Bremspedals die Abspielgeschwindigkeit des Videofilms und damit die wahrgenommene "Fahrgeschwindigkeit" regulieren. Es wird ein deutlicher Einfluß der Gestaltungsmerkmale der durchfahrenen Straßenverkehrssituationen auf die gewählten Fahrgeschwindigkeiten sichtbar: Geschwindigkeitsreduzierend wirken statische Gestaltungsmerkmale wie Fahrbahnverengungen und Versätze, aber auch rein optische Verengungen der Fahrbahn. Kraftfahrer zeigen eine deutliche Bremsbereitschaft vor Bodenschwellen. Dagegen werden regulative Maßnahmen (Beschilderung) nur sehr kurzzeitig wirksam, nach einer vorübergehenden Verlangsamung vor dem Passieren des Verkehrszeichens wird anschließend sogar tendenziell schneller gefahren als vor der Maßnahme. Darüber hinaus werden Angaben von Höchstgeschwindigkeiten als Sollvorgaben für die Mindestgeschwindigkeiten interpretiert und dementsprechend häufig überschritten. Die älteren Autofahrer "fahren" im Durchschnitt in allen Situationen langsamer als jüngere Autofahrer und Autofahrer mittleren Alters, die jüngeren Autofahrer "durchfahren" alle Situationen mit höherer Geschwindigkeit als die Fahrer der anderen Altersgruppen. Besonders einige der jüngeren Autofahrer fallen durch extrem hohe Geschwindigkeiten auf
    corecore