13 research outputs found

    Analysis of Contractile Function of Permeabilized Human Hypertrophic Cardiomyopathy Multicellular Heart Tissue

    Get PDF
    Background: Many forms of hypertrophic cardiomyopathy (HCM) show an increased myofilament Ca2+ sensitivity. This observation has been mainly made in HCM mouse models, myofilament systems, and cardiomyocytes. Studies of multicellular tissues from patients with different HCM-associated gene mutations are scarce. We investigated Ca2+ sensitivity in multicellular cardiac muscle strips of HCM patients. We furthermore evaluated the use of epigallocatechin-3-gallate (EGCg), a Ca2+ desensitizer.Methods: After strip isolation from cardiac tissues with single (MYBPC3, MYH7) or double heterozygous mutations (MYBPC3/FLNC, MYH7/LAMP2, MYBPC3/MYH7) and permeabilization, we performed contractility measurements ±EGCg. We furthermore evaluated gene expression with a customized heart failure gene panel using the NanoString technology.Results: Fmax tended to be higher in HCM than in non-failing (NF) control strips and in single than in double heterozygous strips. Ca2+ sensitivity was higher by trend in most HCM vs. NF strips and by trend in tissues with double vs. single heterozygous mutations. EGCg desensitized myofilaments to Ca2+ in most of the strips and tended to induce a more pronounced shift in strips with truncating than missense or single than double heterozygous mutations. Gene expression analysis revealed lower ATP2A2, PPP1R1A, and FHL2 and higher NPPA, NPPB, COL1A1, CTGF, and POSTN marker levels in HCM than in NF tissues. NPPA, NPPB, ACTA1, CTGF, COL1A1, and POSTN levels were higher in tissues with missense than truncating mutations.Conclusion: We report an increased myofilament Ca2+ sensitivity in native multicellular cardiac HCM strips, which by trend was more pronounced in samples with double heterozygous mutations. EGCg could have differential effects depending on the underlying genetic status (single vs. double heterozygous) and type (missense vs. truncating)

    Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes

    Get PDF
    Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs

    I-1-deficiency negatively impacts survival in a cardiomyopathy mouse model

    No full text
    Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis. Current treatment is based on beta-adrenoceptor (AR) and calcium channel blockers. Since mice deficient of protein phosphatase-1 inhibitor-1 (I-1), an amplifier in beta-AR signalling, were protected from pathological adrenergic stimulation in vivo, we hypothesized that I-1 ablation could result in an improved outcome in a HCM mouse model. We crossed mice deficient of I-1 with homozygous myosin-binding protein C knock-out (Mybpc3 KO) mice exhibiting cardiac dilatation and reduced survival. Unexpectedly, survival time was shorter in double I-1/Mybpc3 KO than in single Mybpc3 KO mice. Longitudinal echocardiographic assessment revealed lower fractional area change, and higher diastolic left ventricular inner dimensions and end-diastolic volumes in Mybpc3 KO than in WT mice. In comparison to Mybpc3 KO, double I-1/Mybpc3 KO presented higher left ventricular end-diastolic volumes, inner dimensions and ventricular surface areas with increasing differences over time. Phosphorylation levels of PKA-downstream targets and mRNA levels of hypertrophic markers did not differ between I-1/Mybpc3 KO and single Mybpc3 KO mice, except a trend towards higher beta-myosin heavy chain levels in double I-1/Mybpc3 KO. The data indicate that interference with beta-AR signalling has no long-term benefit in this severe MYBPC3-related cardiomyopathy mouse model

    Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density

    Get PDF
    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising tool for drug testing and modelling genetic disorders. Abnormally low upstroke velocity is a current limitation. Here we investigated the use of 3D engineered heart tissue (EHT) as a culture method with greater resemblance to human heart tissue in comparison to standard technique of 2D monolayer (ML) format. INa was measured in ML or EHT using the standard patch-clamp technique. INa density was ~1.8 fold larger in EHT (-18.5 +/- 1.9 pA/pF; n = 17) than in ML (-10.3 +/- 1.2 pA/pF; n = 23; p < 0.001), approaching densities reported for human CM. Inactivation kinetics, voltage dependency of steady-state inactivation and activation of INa did not differ between EHT and ML and were similar to previously reported values for human CM. Action potential recordings with sharp microelectrodes showed similar upstroke velocities in EHT (219 +/- 15 V/s, n = 13) and human left ventricle tissue (LV, 253 +/- 7 V/s, n = 25). EHT showed a greater resemblance to LV in CM morphology and subcellular NaV1.5 distribution. INa in hiPSC-CM showed similar biophysical properties as in human CM. The EHT format promotes INa density and action potential upstroke velocity of hiPSC-CM towards adult values, indicating its usefulness as a model for excitability of human cardiac tissue

    I-1-deficiency negatively impacts survival in a cardiomyopathy mouse model

    Get PDF
    Aims Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis. Current treatment is based on beta-adrenoceptor (AR) and calcium channel blockers. Since mice deficient of protein phosphatase-1 inhibitor-1 (I-1), an amplifier in beta-AR signalling, were protected from pathological adrenergic stimulation in vivo, we hypothesized that I-1 ablation could result in an improved outcome in a HCM mouse model. Methods and results We crossed mice deficient of I-1 with homozygous myosin-binding protein C knock-out (Mybpc3 KO) mice exhibiting cardiac dilatation and reduced survival. Unexpectedly, survival time was shorter in double I-1/Mybpc3 KO than in single Mybpc3 KO mice. Longitudinal echocardiographic assessment revealed lower fractional area change, and higher diastolic left ventricular inner dimensions and end-diastolic volumes in Mybpc3 KO than in WT mice. In comparison to Mybpc3 KO, double I-1/Mybpc3 KO presented higher left ventricular end-diastolic volumes, inner dimensions and ventricular surface areas with increasing differences over time. Phosphorylation levels of PKA-downstream targets and mRNA levels of hypertrophic markers did not differ between I-1/Mybpc3 KO and single Mybpc3 KO mice, except a trend towards higher beta-myosin heavy chain levels in double I-1/Mybpc3 KO. Conclusion The data indicate that interference with beta-AR signalling has no long-term benefit in this severe MYBPC3-related cardiomyopathy mouse model

    Atrial-like Engineered Heart Tissue: An In Vitro Model of the Human Atrium

    Get PDF
    Summary: Cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) are under investigation for their suitability as human models in preclinical drug development. Antiarrhythmic drug development focuses on atrial biology for the treatment of atrial fibrillation. Here we used recent retinoic acid-based protocols to generate atrial CMs from hiPSCs and establish right atrial engineered heart tissue (RA-EHT) as a 3D model of human atrium. EHT from standard protocol-derived hiPSC-CMs (Ctrl-EHT) and intact human muscle strips served as comparators. RA-EHT exhibited higher mRNA and protein concentrations of atrial-selective markers, faster contraction kinetics, lower force generation, shorter action potential duration, and higher repolarization fraction than Ctrl-EHTs. In addition, RA-EHTs but not Ctrl-EHTs responded to pharmacological manipulation of atrial-selective potassium currents. RA- and Ctrl-EHTs’ behavior reflected differences between human atrial and ventricular muscle preparations. Taken together, RA-EHT is a model of human atrium that may be useful in preclinical drug screening. : Lemme et al. developed a human, atrial-like engineered heart tissue from hiPSCs that could be used as an in vitro model of the human atrium to evaluate selectivity of novel ion channel blockers for atrial fibrillation. Keywords: hiPSC-CMs, pluripotent stem cells, atrial differentiation, atrial myocytes, atrial-like cells, retinoic acid, engineered heart tissue, cardiac tissue engineering, atrial fibrillatio

    Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effectsin vivoin a mouse model of hypertrophic cardiomyopathy

    No full text
    Aims Hypertrophic cardiomyopathy (HCM) is often accompanied by increased myofilament Ca2+ sensitivity and diastolic dysfunction. Recent findings indicate increased late Na+ current density in human HCM cardiomyocytes. Since ranolazine has the potential to decrease myofilament Ca2+ sensitivity and late Na+ current, we investigated its effects in an Mybpc3-targeted knock-in (KI) mouse model of HCM. Methods and results Unloaded sarcomere shortening and Ca2+ transients were measured in KI and wild-type (WT) cardiomyocytes. Measurements were performed at baseline (1 Hz) and under increased workload (30 nM isoprenaline (ISO), 5 Hz) in the absence or presence of 10 mu M ranolazine. KI myocytes showed shorter diastolic sarcomere length at baseline, stronger inotropic response to ISO, and drastic drop of diastolic sarcomere length under increased workload. Ranolazine attenuated ISO responses in WT and KI cells and prevented workload-induced diastolic failure in KI. Late Na+ current density was diminished and insensitive to ranolazine in KI cardiomyocytes. Ca2+ sensitivity of skinned KI trabeculae was slightly decreased by ranolazine. Phosphorylation analysis of cAMP-dependent protein kinase A-target proteins and ISO concentration-response measurements on muscle strips indicated antagonism at beta-adrenoceptors with 10 mu M ranolazine shifting the ISO response by 0.6 log units. Six-month treatment with ranolazine (plasma level > 20 mu M) demonstrated a beta-blocking effect, but did not reverse cardiac hypertrophy or dysfunction in KI mice. Conclusion Ranolazine improved tolerance to high workload in mouse HCM cardiomyocytes, not by blocking late Na+ current, but by antagonizing beta-adrenergic stimulation and slightly desensitizing myofilaments to Ca2+. This effect did not translate in therapeutic efficacy in vivo

    Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents

    No full text
    The contraction and relaxation of the heart is controlled by stimulation of the beta 1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of beta(1)-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance

    Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes

    Get PDF
    Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs
    corecore