1,641 research outputs found

    Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels

    Get PDF
    A study has been undertaken of four vanadium based steels which have been processed by a simulated direct charging route using processing parameters typical of thin slab casting, where the cast product has a thickness of 50 to 80mm ( in this study 50 mm) and is fed directly to a furnace to equalise the microstructure prior to rolling. In the direct charging process, cooling rates are faster, equalisation times shorter and the amount of deformation introduced during rolling less than in conventional practice. Samples in this study were quenched after casting, after equalisation, after 4th rolling pass and after coiling, to follow the evolution of microstructure. The mechanical and toughness properties and the microstructural features might be expected to differ from equivalent steels, which have undergone conventional processing. The four low carbon steels (~0.06wt%) which were studied contained 0.1wt%V (V-N), 0.1wt%V and 0.010wt%Ti (V-Ti), 0.1wt%V and 0.03wt%Nb (V-Nb), and 0.1wt%V, 0.03wt%Nb and 0.007wt%Ti (V-Nb-Ti). Steels V-N and V-Ti contained around 0.02wt% N, while the other two contained about 0.01wt%N. The as-cast steels were heated at three equalising temperatures of 1050C, 1100C or 1200C and held for 30-60 minutes prior to rolling. Optical microscopy and analytical electron microscopy, including parallel electron energy loss spectroscopy (PEELS), were used to characterise the precipitates. In the as-cast condition, dendrites and plates were found. Cuboid particles were seen at this stage in Steel V-Ti, but they appeared only in the other steels after equalization. In addition, in the final product of all the steels, fine particles were seen, but it was only in the two titanium steels that cruciform precipitates were present. PEELS analysis showed that the dendrites, plates, cuboids, cruciforms and fine precipitates were essentially nitrides. The two Ti steels had better toughness than the other steels but inferior lower yield stress values. This was thought to be, in part, due to the formation of cruciform precipitates in austenite, thereby removing nitrogen and the microalloying elements which would have been expected to precipitate in ferrite as dispersion hardening particles

    Segregation of chromosome arms in growing and non-growing <i>Escherichia coli </i>cells

    Get PDF
    In slow-growing Escherichia coli cells the chromosome is organized with its left (L) and right (R) arms lying separated in opposite halves of the nucleoid and with the origin (O) in-between, giving the pattern L-O-R. During replication one of the arms has to pass the other to obtain the same organization in the daughter cells: L-O-R L-O-R. To determine the movement of arms during segregation six strains were constructed carrying three coloured loci: the left and right arms were labeled with red and cyan fluorescent-proteins, respectively, on loci symmetrically positioned at different distances from the central origin, which was labeled with green-fluorescent protein. In non-replicating cells with the predominant spot pattern L-O-R, initiation of replication first resulted in a L-O-O-R pattern, soon changing to O-L-R-O. After replication of the arms the predominant spot patterns were, L-O-R L-O-R, O-R-L R-O-L or O-L-R L-O-R indicating that one or both arms passed an origin and the other arm. To study the driving force for these movements cell growth was inhibited with rifampicin allowing run-off DNA synthesis. Similar spot patterns were obtained in growing and non-growing cells, indicating that the movement of arms is not a growth-sustained process, but may result from DNA synthesis itself. The distances between loci on different arms (LR-distances) and between duplicated loci (LL- or RR-distances) as a function of their distance from the origin, indicate that in slow-growing cells DNA is organized according to the so-called sausage model and not accordingto the doughnut model

    In the Interests of clients or commerce? Legal aid, supply, demand, and 'ethical indeterminacy' in criminal defence work

    Get PDF
    As a professional, a lawyer's first duty is to serve the client's best interests, before simple monetary gain. In criminal defence work, this duty has been questioned in the debate about the causes of growth in legal aid spending: is it driven by lawyers (suppliers) inducing unnecessary demand for their services or are they merely responding to increased demand? Research reported here found clear evidence of a change in the handling of cases in response to new payment structures, though in ways unexpected by the policy's proponents. The paper develops the concept of 'ethical indeterminacy' as a way of understanding how defence lawyers seek to reconcile the interests of commerce and clients. Ethical indeterminacy suggests that where different courses of action could each be said to benefit the client, the lawyer will tend to advise the client to decide in the lawyer's own interests. Ethical indeterminacy is mediated by a range of competing conceptions of 'quality' and 'need'. The paper goes on to question the very distinction between 'supply' and 'demand' in the provision of legal services

    History-sensitive versus future-sensitive approaches to security in distributed systems

    Full text link
    We consider the use of aspect-oriented techniques as a flexible way to deal with security policies in distributed systems. Recent work suggests to use aspects for analysing the future behaviour of programs and to make access control decisions based on this; this gives the flavour of dealing with information flow rather than mere access control. We show in this paper that it is beneficial to augment this approach with history-based components as is the traditional approach in reference monitor-based approaches to mandatory access control. Our developments are performed in an aspect-oriented coordination language aiming to describe the Bell-LaPadula policy as elegantly as possible. Furthermore, the resulting language has the capability of combining both history- and future-sensitive policies, providing even more flexibility and power.Comment: In Proceedings ICE 2010, arXiv:1010.530

    Creating Calibration Curves to Determine Shock Pressure in Clinopyroxene

    Get PDF
    Impact cratering is an important geological process that occurs on every rocky body in the solar system. It alters the texture and mineralogy of rocks via shock metamorphism. The peak shock pressures experienced by a rock are traditionally evaluated using qualitative optical methods however, quantitative methods do exist. One such method was developed by Uchizono et al., who used X-ray Diffraction (XRD) to measure lattice strain () in several artificially shocked olivine grains using XRD peak broadening as a function of tan , where is the diffraction angle. They plotted the values against the known peak shock pressures experienced by the olivine grains. Using this calibration curve, the precise shock pressure experienced by a grain of olivine can be determined using its measured value. Another method was developed by McCausland et al. and Izawa et al., who used in situ XRD to measure strain-related mosaicity (SRM) of olivine in several ordinary chondrites and enstatite in enstatite chondrites, respectively. They plotted these results against the shock stage estimates for these meteorites. Using these plots, meteorites can be assigned to shock stage bins by measuring the SRM of olivine and/or enstatite. Both methods are useful for evaluating shock metamorphism, however, they have limitations. Uchizono et al.s calibration curve has been successfully applied to martian meteorites, however it can only be applied to olivine-bearing rocks. McCausland et al.s and Izawa et al.s SRM method is uncalibrated and is limited to binning meteorites by shock stage. This work aims to expand on both methods by creating calibration curves for clinopyroxene (CPX): one for , similar to Uchizono et al.s calibration curve for olivine, and one for SRM. This will extend the application of shock calibration methods to a greater variety of rock types. Preliminary results are presented herein

    Partition of Environmental Chemicals between Maternal and Fetal Blood and Tissues

    Get PDF
    Passage of environmental chemicals across the placenta has important toxicological consequences, as well as for choosing samples for analysis and for interpreting the results. To obtain systematic data, we collected in 2000 maternal and cord blood, cord tissue, placenta, and milk in connection with births in the Faroe Islands, where exposures to marine contaminants is increased. In 15 sample sets, we measured a total of 87 environmental chemicals, almost all of which were detected both in maternal and fetal tissues. The maternal serum lipid-based concentrations of organohalogen compounds averaged 1.7 times those of cord serum, 2.8 times those of cord tissue and placenta, and 0.7 those of milk. For organohalogen compounds detectable in all matrices, a high degree of correlation between concentrations in maternal serum and the other tissues investigated was generally observed (r2 > 0.5). Greater degree of chlorination resulted in lower transfer from maternal serum into milk. Concentrations of pentachlorbenzene, γ-hexachlorocyclohexane, and several polychlorinated biphenyl congeners with low chlorination were higher in fetal samples and showed poor correlation with maternal levels. Perfluorinated compounds occurred in lower concentrations in cord serum than in maternal serum. Cadmium, lead, mercury, and selenium were all detected in fetal samples, but only mercury showed close correlations among concentrations in different matrices. Although the environmental chemicals examined pass through the placenta and are excreted into milk, partitions between maternal and fetal samples are not uniform

    Synthesising quantitative and qualitative evidence to inform guidelines on complex interventions: clarifying the purposes, designs and outlining some methods

    Get PDF
    Guideline developers are increasingly dealing with more difficult decisions concerning whether to recommend complex interventions in complex and highly variable health systems. There is greater recognition that both quantitative and qualitative evidence can be combined in a mixed-method synthesis and that this can be helpful in understanding how complexity impacts on interventions in specific contexts. This paper aims to clarify the different purposes, review designs, questions, synthesis methods and opportunities to combine quantitative and qualitative evidence to explore the complexity of complex interventions and health systems. Three case studies of guidelines developed by WHO, which incorporated quantitative and qualitative evidence, are used to illustrate possible uses of mixed-method reviews and evidence. Additional examples of methods that can be used or may have potential for use in a guideline process are outlined. Consideration is given to the opportunities for potential integration of quantitative and qualitative evidence at different stages of the review and guideline process. Encouragement is given to guideline commissioners and developers and review authors to consider including quantitative and qualitative evidence. Recommendations are made concerning the future development of methods to better address questions in systematic reviews and guidelines that adopt a complexity perspective

    Radiating dipoles in photonic crystals

    Get PDF
    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.Comment: Phys. Rev. E, accepte

    High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury

    Get PDF
    Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T* and T, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T*/T mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of changes in all kidney regions during ischemia and early reperfusion. Significant changes in T* and T were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI
    corecore