259 research outputs found

    An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel

    Get PDF
    Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation

    Results of a sub-scale model rotor icing test

    Get PDF
    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters, is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested

    Model rotor icing tests in the NASA Lewis icing research tunnel

    Get PDF
    Tests of a lightly instrumented two-bladed teetering rotor and a heavily instrumented sub-scale articulated main rotor were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in August 1988 and September and November 1989. The first was an OH-58 tail rotor which had a diameter of 1.575 m and a blade chord of 0.133 m, and was mounted on a NASA designed test rig. The second, a four bladed articulated rotor, had a diameter of 1.83 m with 0.124 m chord blades specially fabricated for the experiment. This rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The models were exposed to variations in temperature, liquid water content, and medium droplet diameter, and were operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed), and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracing, and ice molds. Presented here are the sensitivity of the model rotors to the test parameters and a comparison of the results to theoretical predictions

    An overview of a model rotor icing test in the NASA Lewis Icing Research Tunnel

    Get PDF
    During two entries in late 1989, a heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA LeRC Icing Research Tunnel (IRT). The results of this series of tunnel tests were published previously. After studying the results from the 1989 test and comparing them to predictions, it became clear that certain test conditions still needed investigation. Therefore, a re-entry of the Sikorsky Aircraft Powered Force Model (PFM) in the IRT was instituted in order to expand upon the current rotor craft sub-scale model experimental database. The major areas of interest included expansion of the test matrix to include a larger number of points in the FAA AC 29-2 icing envelope, inclusion of a number of high power rotor performance points, close examination of warm temperature operations, operation of the model in constant lift mode, and testing for conditions for icing test points in the full scale helicopter database. The expanded database will allow further and more detailed examination and comparison with analytical models. Participants in the test were NASA LeRC, the U.S. Army Vehicle Propulsion Directorate based at LeRC, and Sikorsky Aircraft. The model rotor was exposed to a range of icing conditions (temperature, liquid water content, median droplet diameter) and was operated over ranges of shaft angle, rotor tip speed, advance ratio, and rotor lift. The data taken included blade strain gage and balance data, as well as still photography, video, ice profile tracings, and ice molds. A discussion of the details of the test is given herein. Also, a brief examination of a subset of the data taken is also given

    Role of Wind Tunnels and Computer Codes in the Certification and Qualification of Rotorcraft for Flight in Forecast Icing

    Get PDF
    The cost and time to certify or qualify a rotorcraft for flight in forecast icing has been a major impediment to the development of ice protection systems for helicopter rotors. Development and flight test programs for those aircraft that have achieved certification or qualification for flight in icing conditions have taken many years, and the costs have been very high. NASA, Sikorsky, and others have been conducting research into alternative means for providing information for the development of ice protection systems, and subsequent flight testing to substantiate the air-worthiness of a rotor ice protection system. Model rotor icing tests conducted in 1989 and 1993 have provided a data base for correlation of codes, and for the validation of wind tunnel icing test techniques. This paper summarizes this research, showing test and correlation trends as functions of cloud liquid water content, rotor lift, flight speed, and ambient temperature. Molds were made of several of the ice formations on the rotor blades. These molds were used to form simulated ice on the rotor blades, and the blades were then tested in a wind tunnel to determine flight performance characteristics. These simulated-ice rotor performance tests are discussed in the paper. The levels of correlation achieved and the role of these tools (codes and wind tunnel tests) in flight test planning, testing, and extension of flight data to the limits of the icing envelope are discussed. The potential application of simulated ice, the NASA LEWICE computer, the Sikorsky Generalized Rotor Performance aerodynamic computer code, and NASA Icing Research Tunnel rotor tests in a rotorcraft certification or qualification program are also discussed. The correlation of these computer codes with tunnel test data is presented, and a procedure or process to use these methods as part of a certification or qualification program is introduced

    A single-particle characterization of a mobile Versatile Aerosol Concentration Enrichment System for exposure studies

    Get PDF
    BACKGROUND: An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to investigate the size and chemical composition of fine concentrated ambient particles (CAPs) in the size range 0.2–2.6 μm produced by a Versatile Aerosol Concentration Enrichment System (VACES) contained within the Mobile Ambient Particle Concentrator Exposure Laboratory (MAPCEL). The data were collected during a study of human exposure to CAPs, in Edinburgh (UK), in February-March 2004. The air flow prior to, and post, concentration in the VACES was sampled in turn into the ATOFMS, which provides simultaneous size and positive and negative mass spectral data on individual fine particles. RESULTS: The particle size distribution was unaltered by the concentrator over the size range 0.2–2.6 μm, with an average enrichment factor during this study of ~5 (after dilution of the final air stream). The mass spectra from single particles were objectively grouped into 20 clusters using the multivariate K-means algorithm and then further grouped manually, according to similarity in composition and time sequence, into 8 main clusters. The particle ensemble was dominated by pure and reacted sea salt and other coarse inorganic dusts (as a consequence of the prevailing maritime-source climatology during the study), with relatively minor contributions from carbonaceous and secondary material. Very minor variations in particle composition were noted pre- and post-particle concentration, but overall there was no evidence of any significant change in particle composition. CONCLUSION: These results confirm, via single particle analysis, the preservation of the size distribution and chemical composition of fine ambient PM in the size range 0.2–2.6 μm after passage through the VACES concentration instrumentation
    • …
    corecore