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Abstract. The present work shows the results of a series of experimental investigations of the 

wake development behind a model rotor subject to upstream disturbances created either by 

another rotor or by a disk. The experiments are carried out in a water flume in order to control 

the flow and to carry out visualizations and to perform optical diagnostics. The aim of the work 

is to clarify similarities and differences in the wake of a wind turbine subject to different inflow 

disturbances, and in particular to see if there is any difference in the rotor wake resulting from a 

upstream disturbance created by a rotor and one created by an immobile disk. The background 

for the study is an on-going discussion if disks can replace rotors in laboratory experiments. In 

the paper, we will also show new experimental data that support our main conclusion, which is 

that strong differences exist between the near wakes characteristics of a rotor and a disk. 

Keywords: bluff-body and rotor aerodynamics, near and far wake, pair interactions, dual disks, 

dual rotors. 

1.  Introduction 

There is an increasing interest in studying rotor wakes and interaction of rotor wakes of wind turbines 

in wind farms [1-2]. The distance between wind turbines typically ranges from 3 to 10 rotor diameters. 

Various engineering models for determining the available power of wind turbines located in wind farms 

have been proposed exploiting the conservation laws of the flow characteristics [3-5], and the influence 

of the ambient turbulence on the power characteristics has been investigated using numerical simulations 

[6]. In spite of the many theoretical and numerical investigations, there is a lack of experiments testing 

systematically the mutual influence between the turbines and their wakes. Experimental data is very 

complicated to obtain for natural atmospheric conditions due to the difficulty of performing controlled 

field experiments. In this regard, laboratory experiments using small models of the rotors operating in 

wind tunnels [2, 7-9] or water flumes [10, 11] have become an important alternative to field 

measurements. In some cases, for simplification, the rotating blades of the rotors have been replaced by 

solid or porous immobile disks [12, 13]. 

The present work concerns the assessment of the impact of different incoming flow conditions and 

flow disturbances on the behavior of single rotors or clusters of rotor. The experiments are carried out 

http://creativecommons.org/licenses/by/3.0
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in a water flume in order to control the flow and to carry out visualizations and optical measurements 

diagnostics. The aim of the work is to clarify similarities and differences in the wake of a wind turbine 

subject to different inflow disturbances, and in particular to see if there is any  difference in the rotor 

wake resulting from a upstream disturbance created by a rotor and one created by an immobile disk.  

2.  Experimental Method and Results 

The experiments are carried out in a water flume of length 35m, 3m width and an operative height 

of 0.9m. The 3m wide test section is fitted with transparent walls at a distance of 20 m from the channel 

inlet. The free flow speed in the flume was U = 0.6 m/s. A Plexiglas disk (not perforated) of diameter D 

= 300 mm was used as passive wake generator (denoted Disk in the following), and the active wake 

generator (denoted Rotor in the following) was represented by a three-bladed rotor model of diameter 

D = 376 mm, corresponding to those used in previous works on disk and rotor far wakes [14-18]. The 

disk and rotor were chosen with different diameters because the main frequency (0.27 Hz and 0.28 Hz, 

respectively) and amplitude of pulsations gave almost the same values in the far wake. The Reynolds 

number based on rotor diameter and the initial flow in the flume varies in the range 140.000 < Re < 

240.000 [15]. The velocity fields were measured with a Dantec stereo PIV system in a 3-D configuration 

with a camera placed in front of the flume and the illumination cross-section in the x-y plane. The light 

source of the PIV light sheet was a Nd:YAG pulse laser with 532 nm wavelength. The images were 

recorded with a Dantec HiSense II camera with a focal distance of 55 mm and pixel resolution. The area 

of the PIV study of the wakes was divided into a series of measurement windows. The windows were 

532x356 mm with 40 mm overlap to ensure to cover the entire velocity field. Every measurement 

window was positioned in the same place of the test transparent section. The wake distance from the 

setup to the testing section was changed by translating a movable platform along the flume axis x. 

 

  

       
Figure 1. (a) Comparisons of velocity profiles U/U0 in half-wake behind a disk and a rotor. Azimuthal vorticity 

distributions in a longitudinal section of (b) the disk half-wake and (c) the rotor half-wake. 

 

(a) 

(b) (c) 
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The development of the average axial velocity profiles is in fig. 1a compared at different downstream 

cross-sections, showing the initial development of the wakes up to 10D downstream. The comparison 

shows the existence of a strong wake just behind the cross-section of the disk, resulting ultimately in a 

complete stop of the flow behind the disk. At the downstream cross-sections, it can be observed that the 

rotor wake recovers slower than the wake of the disc. This fact is in agreement with previous 

investigations [19-20]. The strengths of the two wakes differ because the deficit of the axial velocity in 

the near wake of the rotor, here up to 6D,  is still influenced by the azimuthal vorticity originating from 

the tip vortices behind the rotor (fig. 1c), whereas this is absent behind the disk (fig. 1b). In fig. 2 we 

depict the turbulence levels generated by the upstream located Disk (D) (fig. 2a) and the Rotor (R) (fig. 

2b) at different downstream locations. As seen from the figures, the turbulence levels are largely similar. 

 
 

  
Figure 2. Turbulence levels behind the ‘turbulence generators’:  

(a) Disk and (b) Rotor in three different cross-sections (4D, 6D, 8D). 

 

It is also interesting to compare the performance of the test rotor subject to different upstream devises 

(Rotor or Disc) as function of the distance between the test rotor and the upstream device. This is 

achieved by measuring rotor torque and thrust by strain gauges installed in the rotor mounting [15, 25]. 

The voltage of the sensors was amplified by a preamplifier Scout 55, produced by Hootinger Baldwin 

Messtechnik, and was digitized by the ADC produced by National Instruments Company. Both strain 

sensors were calibrated with an inaccuracy of less than one percent using reference weights. The power 

and thrust coefficients of the test rotor are shown in fig. 3 and in table 1.  The power and thrust 

coefficients of the test rotor subject to the inflow of the upstream located Disk are referred to as CPD and 

CTD, respectively, and the power and thrust coefficients subject to the inflow of the upstream located 

Rotor are denoted CPR and CTR , respectively.  

 

 

 
(a) 

 
(b) 

 

Figure 3. The ratio of power coefficients CPR to CPD (a) and the ratio of thrust coefficients CTR to CTD (b)  

as function of different distances, L, from the (D) and (R) wake generators of the testing rotor at λ=5. 

(a) (b) 
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The measured data serves to calculate average values of the torque and thrust acting on the axis of 

the test rotor. This system recorded the electrical signal of the strain sensors with a frequency of 120 Hz 

for 60 s [15, 25]. The test rotor, which was placed at various distances of L = 3 - 8D downstream of the 

(D) and (R) generators, was operated optimally at a tip speed ratio λ = 5. Furthermore, three different 

wakes were tested behind the (R) generator operated at tip speed ratios λG = 3, 5 (optimal) and 7. The 

ratios of all power coefficients CPR in the Rotor -wakes to the CPD in the disk wake for different values 

of L and λG are shown in figure 3a, and the corresponding ratio of thrust coefficients CTR to CTD are 

depicted in figure 3b. The power and thrust of the test rotor in the Rotor-wake takes lower values than 

in the Disk-wake, which coincide with the behavior of the velocity deficit of the Disk and Rotor wakes 

on fig. 1a. For all distances, L, the power in the Rotor-wake generating at the optimal regime with λG = 

5 corresponds to a minimum, whereas all thrusts grows with λG. The first point shows the possibility of 

reaching a maximum for the performance of an array of turbines operating at non-optimal conditions. 

The difference in the power and thrust in both (D) and (R) wakes dies out at increasing distances L when 

the deficits become small (fig. 1a).  

 

 
Table 1. Values of coefficient CPR and CTR at λ =5 and different values of λG and values of CPD and CPD 

 

 
L 

 L 

3 4 5 6 7 8 
 

3 4 5 6 7 8 

CPR,  

λG=3 
0.48 0.50 0.60 0.77 0.90 1.00 

CTR, 

 λG=3 
0.07 0.11 0.21 0.24 0.26 0.28 

CPR, 

λG=5 
0.31 0.34 0.44 0.56 0.69 0.81 

CTR, 

λG=5 
0.07 0.11 0.23 0.27 0.28 0.29 

CPR, 

λG=7 
0.43 0.46 0.55 0.70 0.83 0.95 

CTR, 

λG=7 
0.09 0.14 0.28 0.34 0.36 0.39 

CPD 0.14 0.19 0.22 0.27 0.29 0.32 CTD 0.52 0.62 0.76 0.81 0.80 0.79 

 

 

Next, the kinematic characteristics of the wake behind the test rotors for the (D) and (R) cases will 

be analyzed to predict the properties of a next downstream turbine (third element on the rotor array), 

because in our early investigation it was found that a simple dual disk-disk system could not adequately 

represent the velocity in the wake behind a rotor-rotor system [14, 16]. This was explained by the strong 

difference in the kinematic characteristics of the two systems. In both cases of (D) and (R) wake 

generators, just like in the uniform flow [18], the same self-similar solution of the far wakes are found 

with the rate “-2/3”, with closing factors 0.51 and 0.71 (fig. 4a and 4c), behind the test rotor located in 

the wakes with high turbulent oscillation levels (fig. 2). The next plots (fig. 4b and 4d) also show good 

correlations between the velocity profiles at the distances L=2-10D where the third element (rotor) can 

be placed in accordance with a typical distance between turbines in ordinary wind farms.  It is clearly 

seen that the difference in the profiles at a distance more than 3D is limited, indicating that the test rotor 

can restructure the initial differences in the Disk and the Rotor wake to very similar forms. The 

turbulence levels in the wakes behind the test rotor (fig. 5) also shows an insignificance difference 

between the (D) and (R) cases.  
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Figure 4. Development of the deficit velocity in the wakes behind the test rotor subject to a turbulent inflow 

generated by the wake generators (D) (a and b) and (R) (c and d). The deficit reductions with the rate “-2/3” are 

in the far wake behind the test rotors located in turbulent wake flows shown by solid lines (-) ; and the one for 

a rotor in initial uniform flow is shown by dashed lines (- -); (b and d) velocity profiles, U/U0, at different 

distance x = 2-10D behind the test rotor, with different line-colors indicating the distance L from the generators 

to test rotor.  

 

The velocity profiles and turbulence levels of both systems with the initial (D) and (R) generators 

(fig. 4, 5) can produce wakes with more similar kinematic characteristics than for the two-different dual 

systems, i.e.  disk-disk or rotor-rotor [14, 16].  

So, there is a possibility to use upstream wake disturbances generated both by a Disk and by a Rotor 

to get similar velocity profiles and turbulence levels behind the second element, i.e. the test rotor, and 

achieving small differences in the power production by the third element (rotor) in this array.   
 

 

  
Figure 5. Turbulence levels in the wakes behind testing rotor at the cross-sections (x/D=4, 6, 8)  

with two different initial disturbances generated by upstream (Lx=6D) (D) (a) or (R)(b). 

(a) (b) 

(c) (d) 

(a) (b) 
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3.  Conclusions 

In the current investigation, the influence of two different initial wakes generated by a disk and a rotor, 

respectively, were investigated. The strong difference in the development of the initial wakes behind an 

immobile disk and an operating rotor was found by PIV-measurements and explained by different types 

of vorticity fields being generated. The self-similarity behavior of the rotor far-wake with the decay 

rates: “-2/3” of the deficit-velocity reduction and “1/3” of the wake expansion was again confirmed 

behind a test rotor subject to different incoming wakes with strong turbulence levels (up to 20%).  

The results did not support alternative wake developments, which has suggested different decay rate 

values, such as “-2” for changes of the velocity deficit and “1” for the wake expansion [21-23]. Indeed 

disk and rotor far wakes with decay rates “-2/3” correspond to the well-known classical solution for the 

development of turbulent far wakes behind axisymmetric bluff bodies [24], which has been well 

reproduced in wind tunnels and water flumes at large Reynolds numbers. Indeed, in accordance with 

[24], the second solution has only been truly observed in very long time DNS simulations of time-

dependent wakes. 

It was found that a rotor wake generated at optimum operating conditions, results in a minimum 

power production of the test rotor. This indicates the possibility of enhancing the overall performance 

of the second rotor by letting the first rotor operate at a non-optimal tip speed ratio. For both Disk and 

Rotor initial disturbance elements, the wake behind the second test rotor consists of similar velocity 

profiles and turbulence levels, which shows that the differences in the wake generated by an upstream 

disk and an upstream rotor have a limited impact on the far wake behind the subsequent wind turbines. 

Therefore, as an overall conclusion, discs can be used to replace rotors when carrying out wind farm 

experiments, but they should not be placed in front of the rotor being tested. Hence testing a third rotor 

in a row, a D-R configuration can be utilized upstream of the rotor, whereas the configurations D-D and 

R-D will not work properly. 
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