36 research outputs found

    A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater

    Get PDF
    Modern Martian dust is similar in composition to the global soil unit and bulk basaltic Mars crust, but it is enriched in S and Cl. The Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory Curiosity rover analyzed air fall dust on the science observation tray (o-tray) in Gale Crater to determine dust oxide compositions. The o-tray dust has the highest concentrations of SO3 and Cl measured in Mars dust (SO3 8.3%; Cl 1.1 wt %). The molar S/Cl in the dust (3.35 ± 0.34) is consistent with previous studies of Martian dust and soils (S/Cl = 3.7 ± 0.7). Fe is also elevated ~25% over average Mars soils and the bulk crust. These enrichments link air fall dust with the S-, Cl-, and Fe-rich X-ray amorphous component of Gale Crater soil. Dust and soil have the same S/Cl, constraining the surface concentrations of S and Cl on a global scale

    Fitting the curve in Excel®:Systematic curve fitting of laboratory and remotely sensed planetary spectra

    Get PDF
    Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to working with spectra may find inadequate help or documentation in the scientific literature or in the software packages available for curve fitting. This problem also extends to the parameterization of spectra and the dissemination of derived metrics. Often, when derived metrics are reported, such as band centres, the discussion of exactly how the metrics were derived, or if there was any systematic curve fitting performed, is not included. Herein we provide both recommendations and methods for curve fitting and explanations of the terms and methods used. Techniques to curve fit spectral data of various types are demonstrated using simple-to-understand mathematics and equations written to be used in Microsoft Excel® software, free of macros, in a cut-and-paste fashion that allows one to curve fit spectra in a reasonably user-friendly manner. The procedures use empirical curve fitting, include visualizations, and ameliorates many of the unknowns one may encounter when using black-box commercial software. The provided framework is a comprehensive record of the curve fitting parameters used, the derived metrics, and is intended to be an example of a format for dissemination when curve fitting data

    Mineralogical and spectroscopic investigation of enstatite chondrites by X-ray diffraction and infrared reflectance spectroscopy

    No full text
    The mineralogy and infrared reflectance spectra of 13 Enstatite (E) chondrite meteorite finds spanning the full range of textural alteration grades in both EL and EH classes have been investigated. Rietveld refinement of high-resolution powder X-ray diffraction (XRD) data was used to determine quantitative major mineral abundances. Sample-correlated mid-infrared (2.0 to 25.0 m; 4500 cm-1 to 400 cm-1) reflectance infrared spectra were collected for each meteorite. Spectral features due to the fundamental lattice vibrations of the silicates, primarily enstatite, dominate the spectra of these meteorites over most of the spectral range investigated. The spectral features related to primary (i.e., pre-terrestrial) mineralogy include fundamental stretching and bending lattice modes (∼8.3-25.0 m; 1200-400 cm-1), overtones and combinations of the fundamental modes (∼4.5-6.1 m; 2200-1650 cm-1), and the principle Christensen feature (∼8.3 m; 1200 cm-1). Terrestrial weathering products including Fe-oxyhydroxides, gypsum, and carbonates occur in most of these meteorites and contribute to some spectral features: particularly an asymmetric feature near ∼2.6 to 3.8 m (3800 to 2600 cm-1) attributed to adsorbed, hydrogen-bonded, and/or structural OH and H2O, and a feature near ∼6.2 m (1625 cm-1) attributed to adsorbed, hydrogen-bonded, and/or structural H2O. Modal mineral abundances determined by Rietveld refinement have been used to calculate model grain densities for each meteorite. Bulk magnetic susceptibility measurements combined with modal mineralogy and grain densities reveal a trend toward lower grain density and lower bulk susceptibility with increased terrestrial weathering

    Mineralogical and spectroscopic investigation of the Tagish Lake carbonaceous chondrite by X-ray diffraction and infrared reflectance spectroscopy

    No full text
    We have carried out a sample-correlated spectroscopic and mineralogical investigation of samples from seven different collection sites of the Tagish Lake C2 chondrite. Rietveld refinement of high-resolution powder X-ray diffraction (XRD) data was used t

    Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery

    No full text
    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed in the Upflow Anaerobic Sludge Blanket (UASB) reactor at lab- and demonstration-scale were analyzed for chemical composition and mineralogy by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Electron microprobe (EMP), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and micro X-ray Diffraction (XRD). The granules had a diameter of 1–2 mm, organic content of 33 wt%, and phosphorus content of 11–13 wt%. Three calcium phosphate phases were identified in the granules: hydroxyapatite, calcium phosphate hydrate and carbonated hydroxyapatite. Without any addition of chemicals, 7 gP/person/year can be recovered with the calcium phosphate granules, representing 2% of the incoming phosphorus in the UASB reactor. As the heavy metal content was lower compared to other phosphorus recovery products, phosphate rock and phosphorus fertilizer, the calcium phosphate granules could be considered as a new phosphorus product

    Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery

    No full text
    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed in the Upflow Anaerobic Sludge Blanket (UASB) reactor at lab- and demonstration-scale were analyzed for chemical composition and mineralogy by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Electron microprobe (EMP), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and micro X-ray Diffraction (XRD). The granules had a diameter of 1–2 mm, organic content of 33 wt%, and phosphorus content of 11–13 wt%. Three calcium phosphate phases were identified in the granules: hydroxyapatite, calcium phosphate hydrate and carbonated hydroxyapatite. Without any addition of chemicals, 7 gP/person/year can be recovered with the calcium phosphate granules, representing 2% of the incoming phosphorus in the UASB reactor. As the heavy metal content was lower compared to other phosphorus recovery products, phosphate rock and phosphorus fertilizer, the calcium phosphate granules could be considered as a new phosphorus product
    corecore