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X-ray scattering reveals the atomic displacements arising from rotational misalignment in ultrathin
silicon bonded wafers. For a 4.3 nm top wafer, the strain field penetrates from the bonded interface
to the surface and produces distinctive finite-size oscillations in x-ray data. Analytical calculations
permit the atomic displacements throughout the thin top wafer to be modeled. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1476702#

When two Si~001! crystals are bonded directly with a
small, well-defined, rotational misorientation, a strain field is
created at the interface that may be characterized in terms of
periodic lattices of dislocations.1 When the period between
dislocations becomes larger than the thickness of the upper
crystal then the strain field will penetrate to the top
surface.2–5 Such bonded wafers have aroused considerable
interest because they open up unique possibilities for device
fabrication.6 Particularly interesting are applications that use
them as templates in epitaxial growth7 or for creating nanom-
eter periodic surface structures by selective etching.8

X-ray scattering measurements of the strain field in thick
bonded wafers with different twist anglesu twist have been
reported previously.1,9 These measurements were later ex-
tended to coveru twist from 0.2° to 25°. We found that the
thickness of the strained interface is about 0.8 nm foru twist

.8° but for smaller angles the thickness is inversely propor-
tional to u twist , and for a twist angle of 0.2°, the thickness
exceeds 30 nm. In this regime we find that the strain ampli-
tude decays exponentially from the bonded interface. In the
present work we apply x-ray scattering to measure the strain
amplitudes in samples with an ultrathin bonded upper crystal
and analyze the results using an isotropic elastic
approximation.1,2,10,11

Silicon-on-insulator~SOI! wafers with a 200 nm Si~001!
crystal on top of the SiO2 were thinned by dry oxidation. The
required layer thickness was determined using ellipsometry.
The wafer was hydrophobically bonded to a standard Si wa-
fer with a well-defined twist angleu twist .

4 After annealing at
1000 °C,9 the SOI bulk crystal and SiO2 layer were etched
away leaving the thin top crystal bonded to the standard
wafer.

The scattering measurements were performed with the
z-axis diffractometer at the BW2 beamline in HASYLAB
~Hamburg, Germany!. The samples were mounted in a con-
stant angle of incidence geometry. The x-ray energy was 10

keV, the angular divergence of the incoming beam
,0.5 mrad, and the angular acceptance of the detector was
set to 1 mrad both horizontally and vertically. We present
data for two samples with thicknesses of the upper crystal of
4.3 and 13.6 nm, respectively. For both samples the twist
angle was 2.1° and the tilt angles were less than 0.3°. The
measured intensities were corrected to account for the Lo-
renz factor, the effective diffracting volume of the sample,
the width of the rocking curve full width at half maximum
~FWHM!, and integrated intensity calculated as peak
intensity3FWHM.

The misfit creates a strain field characterized by a square
lattice of screw dislocations in the bonding plane with a pe-
riod of1,12

l5Nxa/&, ~1!

wherea50.543 nm is the cubic lattice parameter of Si and
Nx is given by

Nx51/@2 sin~u twist/2!#. ~2!

We use surface coordinates with the~001! direction nor-
mal to the surface and~100! along the atomic rows in the
surface plane. The dislocations are inclined byu twist/2 rela-
tive to the ~100! directions of both crystals. For the first-
harmonic component the 1/e length of the strain decay is
equal tol/2p.13 For samples with a thin upper crystal we
include the effect of image forces in the model calculation of
the displacements from the dislocations.3,10

The strain field produces satellite reflections (S) in the
plane parallel to the interface around the Bragg points (P) of
the two crystals. The satellite positions are determined by the
reciprocal lattice of the square array of dislocations. The
scattering intensity at satellite points is caused by the dis-
placements from the bulk lattice sites in the two crystals and
the strain is the derivative of the displacement field.

The fundamental wave vectorq for the periodic dis-
placement field is equal to the difference between the~101!
Bragg points of the substrate crystalP1(101) and the upper
crystalP2(101), shown in the inset to Fig. 2~c!:
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q5P2~101!2P1~101!. ~3!

Satellites occur atP1(101)2q andP2(101)1q, and also at
P1(112)6q and atP2(112)6q and around all other bulk
Bragg points.

The intensity profile measured in scans through satellite
points in the direction perpendicular to the interface~z direc-
tion in real space andl direction in reciprocal space! reveals
the changes in the displacements with increasing distance
from the interface.1 For ultrathin upper crystals intensity os-
cillations are produced by the abrupt termination at the top
surface.

Figure 1 shows x-ray scattering data from the sample
with a 4.3 nm top crystal. Panel~a! shows anl scan through
a satellite near a~112! bulk Bragg reflection. The location of
the satellite peak in the (hk) plane atl 52 is indicated in the
upper-right corner of Fig. 1; the reciprocal lattice axes of the
bottom crystal are indicated by solid lines and those of the
top crystal by dashed lines. At the satellite pointS(112)
5P1(112)1q marked by1 in Fig. 1~a! the scattering inten-
sity contains contributions from the first harmonic of the
displacement field in both crystals so it is a relatively strong
satellite.

The solid curve in Fig. 1 shows the calculated profile
assuming homogeneous elastic properties. The best fit was
obtained with a top surface roughness ofs50.6 nm and a
model where the intensities from three different top crystal
thicknesses,Ntopa57a, 8a and 9a, were added. The mean
slope in the wings of the curve determines the surface rough-
ness. The surface-termination oscillations are damped by
adding contributions from different top crystal
thicknesses—in this case three were necessary. Panel 1~b!
shows the structure-factor amplitude atl 52 of single atomic
layers parallel to the interface for layers separated bya
50.543 nm. If there were no surface termination at the top
surface the function in Fig. 1~b! would be symmetric.

Figure 1~a! clearly demonstrates that the strain pen-
etrates the entire upper crystal. Figure 1~c! shows a similar

scan from the same sample through theP2(112) Bragg point
of the upper crystal together with the calculated profile. The
best fit is obtained using the same parameters as in Fig. 1~a!
except for a larger surface roughness ofs50.9 nm. The gen-
eral shapes of the two intensity curves is nicely reproduced
by the model calculation.

Figure 2 shows similar results from the sample with a
13.6 nm top crystal. The intensity curves are calculated by
summing contributions from crystal thicknessesNtopa
524a, 25a, and 26a with a surface roughness ofs
50.4 nm. The same parameters, including the surface
roughness, were used in Figs. 2~a! and 2~c!. Here, we present
results for the satellite pointP2(101)1q and the Bragg point
P2(101). The asymmetry of the single-layer structure factor
amplitude in panel~b! arises from the superposition of the
first harmonic of the periodic displacement field in the upper
crystal with the second harmonic in the substrate crystal.
There are clearly no oscillations visible in Fig. 2~a!, and the
effect of the strain field at the surface is negligible. Figure
2~c! shows the distinct oscillations in the Bragg scattering
intensity for the 13.6-nm-thick upper crystal.

The data presented here illustrate the wide range in real-
space dimensions that can be realized for regular patterns of
strained silicon. By establishing small misfit angles of a few
tenths of a degree, the strain pattern parallel to the interface
may have a 100 nm period and a perpendicular decay length
of several 10 nm. A bonded wafer with a 5 nmupper crystal
will provide perfect matching with a zero substrate misfit
incorporating an array of dislocations, each forming a dislo-
cation pair together with its mirror dislocation above the sur-
face. The displacements in the upper crystal will be domi-
nated by the local field from the nearest dislocation and be
anharmonic throughout the entire crystal. With larger misfit
u twist or thicker upper crystal, whenNtopa.l/(2p), the dis-
placement field becomes more harmonic towards the top sur-
face and the displacement amplitude decreases exponentially.
This is illustrated in Fig. 3, which shows the displacement

FIG. 1. X-ray data and model calculations for a bonded
wafer with a 4.3 nm top crystal. Panel~a! shows the
integrated intensity in anl scan through the satelliteS
marked with1. The reciprocal lattice axes atl 52 of
the substrate~solid lines! and top crystal~dashed lines!
are indicated@the turn angle (u twist) being exaggerated
for clarity#. The solid curve is the model calculation.
Panel~b! shows the structure factor amplitude atl 52
for single atomic layers. Panels~c! and ~d! show the
corresponding data for anl scan through the Bragg
point P2(1 1 2).
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function of the individual atomic layer parallel to the inter-
face taken from the model calculation of Fig. 1~a!. For clar-
ity, the curves are vertically displaced by 0.25, the interval
between the atomic layers isa, and the units for both axes is
a/&. The arrow atl/~2p! illustrates the borderline between
the harmonic and the anharmonic regimes. In the latter, the
almost linear slope regions of the curves correspond to al-
most matching nonrotated crystals. This sample has signifi-
cant top surface strain, which will influence both the surface

reconstruction as well as the nucleation properties in thin-
film growth.

The practical application of thin bonded Si wafers will
still depend on the fabrication of samples combining the
properties described above with controlled properties of the
top surface including purity and roughness. An important
next step will be to study such systems with standard ultra-
high-vacuum surface analysis techniques including scanning
tunneling microscopy, and to use bonded wafers as templates
for the epitaxial growth of ordered arrays of nanoclusters.
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FIG. 2. X-ray data and model calculations for a bonded
wafer with 13.6 nm top crystal. Symbols and curves are
as in Fig. 1 but the inset in panel~a! shows the recip-
rocal lattice planes atl 51.

FIG. 3. Displacement wave in atomic layers parallel to the interface in the
4.3 nm upper crystal. The displacementsdy(x) in they direction are shown
as a function ofx, both in units ofa/&. The curves are for atomic layers,
the lattice parameter isa, and for clarity they are shifted vertically 0.25
relative to each other.
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