624 research outputs found

    Maternal involvement in a nurse home visiting program to prevent child maltreatment

    Get PDF
    This thesis aimed to explore key maternal characteristics and program factors related to maternal involvement in a nurse home visiting program to prevent child maltreatment. The relationship between maternal involvement and program outcomes was also examined. Ecological Systems Theory and the Integrated Theory of Parental Involvement were used to contextualise the study design and shape research questions. Secondary data analysis was performed using data collected during an earlier randomised controlled trial, in which 40 women who met criteria placing them at risk of potential child abuse or neglect were enrolled in either the standard nurse home visiting program or the augmented intervention. Primary data related to maternal involvement were collected via chart audit. Statistical analysis focused on measures of clinical significance, and correlations examined the relationships between maternal involvement and the program outcomes of measurement of the home environment (HOME) scores and maternal responsivity to the infant. No clinically significant relationships were found between program augmentation and maternal involvement in the home visiting program. Women categorised as being at-risk received more home visits than other women. One notable exception to this finding is that women in relationships characterised by intimate partner violence were more likely to leave the program early and to receive less home visits. A positive relationship emerged in which women who received more home visits had a higher level of responsivity to their infant and also scored highly on HOME total scores. This study provides a valuable addition to the growing body of literature investigating how home visiting can contribute to positive outcomes for at-risk families. It highlights the importance of further, theoretically based research to disentangle antecedents of maternal involvement and the subsequent impact on program outcomes

    Alien Registration- Flemington, Edith (Houlton, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/36080/thumbnail.jp

    siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells

    Get PDF
    AbstractThe Epstein Barr virus (EBV) plays a role in maintenance of the tumor phenotype in a number of human cancers. The EBV latency replication factor, EBNA1, is required for persistence of the EBV episome, is anti-apoptotic, and is universally expressed in all EBV-associated tumors. Here, we show that EBNA1-specific siRNAs can inhibit EBNA1 expression and function. siRNAs were generated against three target sites in the EBNA1 messenger RNA, and two of these were found to inhibit EBNA1 expression from an ectopic EBNA1 expression cassette. EBNA1 siRNAs also inhibit endogenously expressed EBNA1 in EBV-positive epithelial and B-cell lines. Using a mini-EBV replication model, siRNA-mediated inhibition of EBNA1 expression suppressed the episomal maintenance function of EBNA1. Lastly, introduction of an EBNA1 siRNA into an EBV-positive tumor cell line inhibited tumor cell growth/survival. These data suggest that siRNAs against EBNA1 may have therapeutic value in EBV-associated diseases

    Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells

    Get PDF
    Mutations to fibroblast growth factor receptor 3 (FGFR3) and phosphatase and tensin homologue (PTEN) signalling pathway components (for example, PTEN loss, PIK3CA, AKT1, TSC1/2) are common in bladder cancer, yet small-molecule inhibitors of these nodes (FGFR/PTENi) show only modest activity in preclinical models. As activation of autophagy is proposed to promote survival under FGFR/PTENi, we have investigated this relationship in a panel of 18 genetically diverse bladder cell lines. We found that autophagy inhibition does not sensitise bladder cell lines to FGFR/PTENi, but newly identify an autophagy-independent cell death synergy in FGFR3-mutant cell lines between mTOR (mammalian target of rapamycin) pathway inhibitors and chloroquine (CQ)—an anti-malarial drug used as a cancer therapy adjuvant in over 30 clinical trials. The mechanism of synergy is consistent with lysosomal cell death (LCD), including cathepsin-driven caspase activation, and correlates with suppression of cSREBP1 and cholesterol biosynthesis in sensitive cell lines. Remarkably, loss of viability can be rescued by saturating cellular membranes with cholesterol or recapitulated by statin-mediated inhibition, or small interfering RNA knockdown, of enzymes regulating cholesterol metabolism. Modulation of CQ-induced cell death by atorvastatin and cholesterol is reproduced across numerous cell lines, confirming a novel and fundamental role for cholesterol biosynthesis in regulating LCD. Thus, we have catalogued the molecular events underlying cell death induced by CQ in combination with an anticancer therapeutic. Moreover, by revealing a hitherto unknown aspect of lysosomal biology under stress, we propose that suppression of cholesterol metabolism in cancer cells should elicit synergy with CQ and define a novel approach to future cancer treatments

    SAMMate: a GUI tool for processing short read alignments in SAM/BAM format

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next Generation Sequencing (NGS) technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM) or Binary SAM (BAM) format is now standard, biomedical researchers still have difficulty accessing this information.</p> <p>Results</p> <p>We have developed a Graphical User Interface (GUI) software tool named SAMMate. SAMMate allows biomedical researchers to quickly process SAM/BAM files and is compatible with both single-end and paired-end sequencing technologies. SAMMate also automates some standard procedures in DNA-seq and RNA-seq data analysis. Using either standard or customized annotation files, SAMMate allows users to accurately calculate the short read coverage of genomic intervals. In particular, for RNA-seq data SAMMate can accurately calculate the gene expression abundance scores for customized genomic intervals using short reads originating from both exons and exon-exon junctions. Furthermore, SAMMate can quickly calculate a whole-genome signal map at base-wise resolution allowing researchers to solve an array of bioinformatics problems. Finally, SAMMate can export both a wiggle file for alignment visualization in the UCSC genome browser and an alignment statistics report. The biological impact of these features is demonstrated via several case studies that predict miRNA targets using short read alignment information files.</p> <p>Conclusions</p> <p>With just a few mouse clicks, SAMMate will provide biomedical researchers easy access to important alignment information stored in SAM/BAM files. Our software is constantly updated and will greatly facilitate the downstream analysis of NGS data. Both the source code and the GUI executable are freely available under the GNU General Public License at <url>http://sammate.sourceforge.net</url>.</p

    Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    Get PDF
    The Epstein-Barr virus (EBV) encoded Latent Membrane Protein 1 (LMP1) has been shown to increase the expression of promyelocytic leukemia protein (PML) and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs). PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1

    BZLF1, an Epstein–Barr virus immediate–early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    Get PDF
    AbstractWe have previously demonstrated that the Epstein–Barr virus immediate–early BZLF1 protein interacts with, and is inhibited by, the NF-κB family member p65. However, the effects of BZLF1 on NF-κB activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-κB-responsive genes, ICAM-1 and IκB-α. BZLF1 also reduced the constitutive level of IκB-α protein in HeLa and A549 cells, and increased the amount of nuclear NF-κB to a similar extent as tumor necrosis factor-alpha (TNF-α) treatment. In spite of this BZLF1-associated increase in the nuclear form of NF-κB, BZLF1 did not induce binding of NF-κB to NF-κB responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-α treatment induced NF-κB binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-κB also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of IκB-α, decreased expression of IκB-α protein, and subsequent translocation of NF-κB to the nucleus. This nuclear translocation of NF-κB may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection

    Smoking cessation messages for pregnant aboriginal and torres strait islander women: A rapid review of peer-reviewed literature and assessment of research translation of media content

    Full text link
    This review summarized literature about knowledge, attitudes, and beliefs of Aboriginal and Torres Strait Islander women from Australia who smoke during pregnancy, then examined the extent that existing health promotion materials and media messages aligned with evidence on smoking cessation for pregnant Aboriginal and Torres Strait Islander women. Knowledge, attitudes, and beliefs of pregnant Aboriginal women who smoke tobacco were identified in the literature. Health promotion campaigns were retrieved from a grey literature search with keywords and social and professional networks. Key themes from peer-reviewed papers were compared against the content of health promotion campaigns using the Aboriginal Social and Emotional Wellbeing Model, the Behavior Change Wheel and thematic analysis. Eleven empirical studies and 17 campaigns were included. Empirical studies highlighted women sought holistic care that incorporated nicotine replacement therapy, engaged with their family and community and the potential for education about smoking cessation to empower a woman. Health promotion campaigns had a strong focus on ‘engagement with family and community’, ‘knowledge of risks of smoking,’ ‘giving up vs cutting down’ and ‘culture in language and arts’. There were similarities and variances in the key themes in the research evidence and promotion materials. Topics highly aligned included risks from smoking and quitting related issues

    microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity

    Get PDF
    Background: The AKT/mammalian target of rapamycin (mTOR) signaling pathway is regulated by 17 α -estradiol (E2) signaling and mediates E2-induced proliferation and progesterone receptor (PgR) expression in breast cancer. Methods and results: Here we use deep sequencing analysis of previously published data from The Cancer Genome Atlas to demonstrate that expression of a key component of mTOR signaling, rapamycin-insensitive companion of mTOR (Rictor), positively correlated with an estrogen receptor- α positive (ER α + ) breast tumor signature. Through increased microRNA-155 (miR-155) expression in the ER α + breast cancer cells we demonstrate repression of Rictor enhanced activation of mTOR complex 1 (mTORC1) signaling with both qPCR and western blot. miR-155-mediated mTOR signaling resulted in deregulated ER α signalingbothinculturedcells in vitro and in xenografts in vivo in addition to repressed PgR expression and act ivity.FurthermoreweobservedthatmiR-155 enhanced mTORC1 signaling (observed through western blot for increased phosphorylation on mTOR S2448) and induced inhibition of mTORC2 signaling (evident through repressed Rictor and tuberous sclerosis 1 (TSC1) gene expression). mTORC1 induced deregulation of E2 signaling was confirmed using qPCR and the mTORC1-specific inhibitor RAD001. Co-treatment of MCF7 breast cancer cells stably overexpressing miR-155 with RAD001 and E2 restored E2-induced PgR gene expression. RAD001 treatment of SCID/CB17 mice inhibited E2-induced tumorigenesis of the MCF7 miR-155 overexpressing cell line. Finally we demonstrated a strong positive correlation between Rictor and PgR expression and a negative correlation with Raptor expression in Luminal B breast cancer samples, a breast cancer histological subtype known for having an altered ER α -signaling pathway. Conclusions: miRNA mediated alterations in mTOR and ER α signaling establishes a new mechanism for altered estrogen responses independent of growth factor stimulation

    Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon
    corecore