12,855 research outputs found

    An improved perturbation approach to the 2D Edwards polymer -- corrections to scaling

    Full text link
    We present the results of a new perturbation calculation in polymer statistics which starts from a ground state that already correctly predicts the long chain length behaviour of the mean square end--to--end distance RN2 \langle R_N^2 \rangle\ , namely the solution to the 2~dimensional~(2D) Edwards model. The RN2\langle R_N^2 \rangle thus calculated is shown to be convergent in NN, the number of steps in the chain, in contrast to previous methods which start from the free random walk solution. This allows us to calculate a new value for the leading correction--to--scaling exponent~Δ\Delta. Writing RN2=AN2ν(1+BNΔ+CN1+...)\langle R_N^2 \rangle = AN^{2\nu}(1+BN^{-\Delta} + CN^{-1}+...), where ν=3/4\nu = 3/4 in 2D, our result shows that Δ=1/2\Delta = 1/2. This value is also supported by an analysis of 2D self--avoiding walks on the {\em continuum}.Comment: 17 Pages of Revtex. No figures. Submitted to J. Phys.

    Testing improved staggered fermions with msm_s and BKB_K

    Get PDF
    We study the improvement of staggered fermions using hypercubically smeared (HYP) links. We calculate the strange quark mass and the kaon B-parameter, BKB_K, in quenched QCD on a 163×6416^3 \times 64 lattice at β=6.0\beta=6.0. We find ms(MSˉ,2GeV)=101.2±1.3±4m_s(\bar{\rm MS},2 {\rm GeV})=101.2\pm1.3\pm4 MeV and BK(MSˉ,2GeV)=0.578±0.018±0.042B_K(\bar{\rm MS},2 {\rm GeV}) = 0.578 \pm 0.018\pm 0.042, where the first error is from statistics and fitting, and the second from using one-loop matching factors. The scale (1/a=1.951/a=1.95GeV) is set by MρM_\rho, and msm_s is determined using the kaon mass. Comparing to quenched results obtained using unimproved staggered fermions and other discretizations, we argue that the size of discretization errors in BKB_K is substantially reduced by improvement.Comment: 9 pages, 12 figure, referee's comments are incorporate

    Domain Wall Fermions in Quenched Lattice QCD

    Get PDF
    We study the chiral properties and the validity of perturbation theory for domain wall fermions in quenched lattice QCD at beta=6.0. The explicit chiral symmetry breaking term in the axial Ward-Takahashi identity is found to be very small already at Ns=10, where Ns is the size of the fifth dimension, and its behavior seems consistent with an exponential decay in Ns within the limited range of Ns we explore. From the fact that the critical quark mass, at which the pion mass vanishes as in the case of the ordinary Wilson-type fermion, exists at finite Ns, we point out that this may be a signal of the parity broken phase and investigate the possible existence of such a phase in this model at finite Ns. The rho and pi meson decay constants obtained from the four-dimensional local currents with the one-loop renormalization factor show a good agreement with those obtained from the conserved currents

    Remote functionalisation via sodium alkylamidozincate intermediates : access to unusual fluorenone and pyridyl ketone reactivity patterns

    Get PDF
    Treating fluorenone or 2-benzoylpyridine with the sodium zincate [(TMEDA)center dot Na(mu-Bu-t)(mu-TMP)Zn(Bu-t)] in hexane solution, gives efficient Bu-t addition across the respective organic substrate in a highly unusual 1,6-fashion, producing isolable organometallic intermediates which can be quenched and aerobically oxidised to give 3-tert-butyl-9H-fluoren-9-one and 2-benzoyl-5-tert-butylpyridine respectively

    Imaging analysis of LDEF craters

    Get PDF
    Two small craters in Al from the Long Duration Exposure Facility (LDEF) experiment tray A11E00F (no. 74, 119 micron diameter and no. 31, 158 micron diameter) were analyzed using Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), low voltage scanning electron microscopy (LVSEM), and SEM energy dispersive spectroscopy (EDS). High resolution images and sensitive elemental and molecular analysis were obtained with this combined approach. The result of these analyses are presented
    corecore