834 research outputs found

    Vladimir Solovyov : His restatements of a traditional cosmology.

    Get PDF
    SIGLELD:D48661/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Mechanisms and Patterns of Invasion in Macrophyte Communities

    Get PDF
    Aquatic plants (macrophytes) are important components of freshwater ecosystems and serve numerous purposes, physical and biological, that help to structure aquatic communities. Although macrophytes represent an essential component of stable aquatic communities, invasive macrophytes may negatively alter ecosystem properties. Non-native, invasive species have been identified as a major cause of biodiversity loss and the increasing prevalence of invasive species has prompted studies to help understand their impacts and to conserve biodiversity. Studying mechanisms of invasion also gives insight into how communities are structured and assembled. This study examined mechanisms that contribute to macrophyte invasion. First, I reviewed literature concerning mechanisms of macrophyte invasion. Mechanisms identified with this review were then placed within the context of the invasion process and potential taxonomic biases were discussed. Second, a set of classic invasion hypotheses were tested, including biotic resistance, disturbance, and stress, using mixed-effects models on survey data collected from twenty-nine lakes across the United States. Finally, using the same survey data, I performed an observational test of Darwin’s Naturalization Hypothesis at a small (point) and large (lake) scale for two highly invasive macrophytes, Potamogeton crispus and Myriophyllum spicatum. Results of the first study indicated that many invasion mechanisms have been tested with fully aquatic macrophytes with varied levels of support. In addition, there is likely a taxonomic bias depending on geographic location of the invaded area. The second study indicated that biotic interaction, disturbance, and stress interact, often in non-linear ways to influence probability of an invasive species occurring at a location. However, models containing these variables explained a relatively low percentage of variation in probabilities. Finally, there was no support for Darwin’s naturalization hypothesis at either a point or lake scale. Future research should continue the search for mechanisms that allow introduced species to establish. It is likely that general principles do not exist, at least among comparisons across ecosystem types. However, ecologists should continue to search for general patterns within definable ecosystem units to increase understanding about factors contributing to invasibility

    Mechanisms and Patterns of Invasion in Macrophyte Communities

    Get PDF
    Aquatic plants (macrophytes) are important components of freshwater ecosystems and serve numerous purposes, physical and biological, that help to structure aquatic communities. Although macrophytes represent an essential component of stable aquatic communities, invasive macrophytes may negatively alter ecosystem properties. Non-native, invasive species have been identified as a major cause of biodiversity loss and the increasing prevalence of invasive species has prompted studies to help understand their impacts and to conserve biodiversity. Studying mechanisms of invasion also gives insight into how communities are structured and assembled. This study examined mechanisms that contribute to macrophyte invasion. First, I reviewed literature concerning mechanisms of macrophyte invasion. Mechanisms identified with this review were then placed within the context of the invasion process and potential taxonomic biases were discussed. Second, a set of classic invasion hypotheses were tested, including biotic resistance, disturbance, and stress, using mixed-effects models on survey data collected from twenty-nine lakes across the United States. Finally, using the same survey data, I performed an observational test of Darwin’s Naturalization Hypothesis at a small (point) and large (lake) scale for two highly invasive macrophytes, Potamogeton crispus and Myriophyllum spicatum. Results of the first study indicated that many invasion mechanisms have been tested with fully aquatic macrophytes with varied levels of support. In addition, there is likely a taxonomic bias depending on geographic location of the invaded area. The second study indicated that biotic interaction, disturbance, and stress interact, often in non-linear ways to influence probability of an invasive species occurring at a location. However, models containing these variables explained a relatively low percentage of variation in probabilities. Finally, there was no support for Darwin’s naturalization hypothesis at either a point or lake scale. Future research should continue the search for mechanisms that allow introduced species to establish. It is likely that general principles do not exist, at least among comparisons across ecosystem types. However, ecologists should continue to search for general patterns within definable ecosystem units to increase understanding about factors contributing to invasibility

    Macrophyte Re-establishment and Deductive GIS Modeling to Identify Planting Locations for Fish Habitat Enhancement Projects

    Get PDF
    Aquatic macrophytes are important components in structuring aquatic communities because they provide physical and biological functions that contribute to the stability of the ecosystem. Macrophytes provide the basis for the aquatic food-web and also provide habitat and refugia for aquatic fauna. In systems that lack macrophytes, anthropogenic re-establishment may be a feasible management approach to improve aquatic ecosystems. Understanding environmental factors that regulate colonization, dispersal, and persistence of aquatic macrophytes is pertinent to re-establishment efforts. The purpose of this study is to test hypotheses regarding success of macrophyte re-establishment efforts in Little Bear Creek Reservoir, Alabama using different macrophyte species, water depths, plant patch size and protection against herbivores at planting sites. In addition, a deductive GIS model is used to predict suitable areas to focus re-establishment efforts. Knowledge generated from hypothesis testing and application of GIS modeling provides novel information and tools for managing aquatic ecosystems

    Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    Get PDF
    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ 13 C and δ 15 N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ 15 N (trophic position) were evident between all three species, with size-based and temporal shifts in δ 15 N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models

    LWD best practice guide

    Get PDF
    This Best Practice Guide has emerged from a working group (Pavement Foundations Group) to address the need for consistency in the implementation of LWD’s into UK practice. However, the guide does reflect best practice for a range of applications. It describes the industry best practice for using Lightweight Deflectometers to verify the construction quality of road foundations. The guide is seen as a statement of current knowledge, and includes recommendations for site operations. It is expected that this guidance will be updated periodically

    Measuring cognitive effort without difficulty

    Get PDF
    An important finding in the cognitive effort literature has been that sensitivity to the costs of effort varies between individuals, suggesting that some people find effort more aversive than others. It has been suggested this may explain individual differences in other aspects of cognition; in particular that greater effort sensitivity may underlie some of the symptoms of conditions such as depression and schizophrenia. In this paper, we highlight a major problem with existing measures of cognitive effort that hampers this line of research, specifically the confounding of effort and difficulty. This means that behaviour thought to reveal effort costs could equally be explained by cognitive capacity, which influences the frequency of success and thereby the chance of obtaining reward. To address this shortcoming, we introduce a new test, the Number Switching Task (NST), specially designed such that difficulty will be unaffected by the effort manipulation and can easily be standardised across participants. In a large, online sample, we show that these criteria are met successfully and reproduce classic effort discounting results with the NST. We also demonstrate the use of Bayesian modelling with this task, producing behavioural parameters which can be associated with other measures, and report a preliminary association with the Need for Cognition scale

    Correction: Measuring cognitive effort without difficulty

    Get PDF

    Traditional vs modern:Role of breed type in determining enteric methane emissions from cattle grazing as part of contrasting grassland-based systems

    Get PDF
    Ruminant livestock turn forages and poor-quality feeds into human edible products, but enteric methane (CH4) emissions from ruminants are a significant contributor to greenhouse gases (GHGs) and hence to climate change. Despite the predominance of pasture-based beef production systems in many parts of Europe there are little data available regarding enteric CH4 emissions from free-ranging grazing cattle. It is possible that differences in physiology or behaviour could influence comparative emissions intensities for traditional and modern breed types depending on the nutritional characteristics of the herbage grazed. This study investigated the role of breed type in influencing CH4 emissions from growing beef steers managed on contrasting grasslands typical of intensive (lowland) and extensive (upland) production systems. Using the SF6 dilution technique CH4 emissions were estimated for a modern, fast-growing crossbred (Limousin cross) and a smaller and hardier native breed (Welsh Black) when grazing lowland perennial ryegrass (high nutritional density, low sward heterogeneity) and semi-improved upland pasture (low/medium nutritional density, high sward heterogeneity). Live-weight gain was substantially lower for steers on the upland system compared to the lowland system (0.31 vs. 1.04 kg d-1; s.e.d. = 0.085 kg d-1; P<0.001), leading to significant differences in estimated dry matter intakes (8.0 vs. 11.1 kg DM d-1 for upland and lowland respectively; s.e.d. = 0.68 kg DM d-1; P<0.001). While emissions per unit feed intake were similar for the lowland and upland systems, CH4 emissions per unit of live-weight gain (LWG) were substantially higher when the steers grazed the poorer quality hill pasture (760 vs 214 g kg-1 LWG; s.e.d. = 133.5 g kg-1 LWG; P<0.001). Overall any effects of breed type were relatively small relative to the combined influence of pasture type and location

    A hardware spinal decoder

    Get PDF
    Spinal codes are a recently proposed capacity-achieving rateless code. While hardware encoding of spinal codes is straightforward, the design of an efficient, high-speed hardware decoder poses significant challenges. We present the first such decoder. By relaxing data dependencies inherent in the classic M-algorithm decoder, we obtain area and throughput competitive with 3GPP turbo codes as well as greatly reduced latency and complexity. The enabling architectural feature is a novel alpha-beta incremental approximate selection algorithm. We also present a method for obtaining hints which anticipate successful or failed decoding, permitting early termination and/or feedback-driven adaptation of the decoding parameters. We have validated our implementation in FPGA with on-air testing. Provisional hardware synthesis suggests that a near-capacity implementation of spinal codes can achieve a throughput of 12.5 Mbps in a 65 nm technology while using substantially less area than competitive 3GPP turbo code implementations.Irwin Mark Jacobs and Joan Klein Jacobs Presidential FellowshipIntel Corporation (Fellowship)Claude E. Shannon Research Assistantshi
    • …
    corecore