556 research outputs found
A stationary source of non-classical or entangled atoms
A scheme for generating continuous beams of atoms in non-classical or
entangled quantum states is proposed and analyzed. For this the recently
suggested transfer technique of quantum states from light fields to collective
atomic excitation by Stimulated Raman adiabatic passage [M.Fleischhauer and
M.D. Lukin, Phys.Rev.Lett. 84, 5094 (2000)] is employed and extended to matter
waves
Studies of group velocity reduction and pulse regeneration with and without the adiabatic approximation
We present a detailed semiclassical study on the propagation of a pair of
optical fields in resonant media with and without adiabatic approximation. In
the case of near and on resonance excitation, we show detailed calculation,
both analytically and numerically, on the extremely slowly propagating probe
pulse and the subsequent regeneration of a pulse via a coupling laser. Further
discussions on the adiabatic approximation provide many subtle understandings
of the process including the effect on the band width of the regenerated
optical field. Indeed, all features of the optical pulse regeneration and most
of the intricate details of the process can be obtained with the present
treatment without invoke a full field theoretical method. For very far off
resonance excitation, we show that the analytical solution is nearly detuning
independent, a surprising result that is vigorously tested and compared to
numerical calculations with very good agreement.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
Modematching an optical quantum memory
We analyse the off-resonant Raman interaction of a single broadband photon,
copropagating with a classical `control' pulse, with an atomic ensemble. It is
shown that the classical electrodynamical structure of the interaction
guarantees canonical evolution of the quantum mechanical field operators. This
allows the interaction to be decomposed as a beamsplitter transformation
between optical and material excitations on a mode-by-mode basis. A single,
dominant modefunction describes the dynamics for arbitrary control pulse
shapes.
Complete transfer of the quantum state of the incident photon to a collective
dark state within the ensemble can be achieved by shaping the control pulse so
as to match the dominant mode to the temporal mode of the photon. Readout of
the material excitation, back to the optical field, is considered in the
context of the symmetry connecting the input and output modes. Finally, we show
that the transverse spatial structure of the interaction is characterised by
the same mode decomposition.Comment: 17 pages, 4 figures. Brief section added treating the transverse
spatial structure of the memory interaction. Some references added. A few
typos fixe
Dark-State Polaritons for multi-component and stationary light fields
We present a general scheme to determine the loss-free adiabatic
eigensolutions (dark-state polaritons) of the interaction of multiple probe
laser beams with a coherently driven atomic ensemble under conditions of
electromagnetically induced transparency. To this end we generalize the
Morris-Shore transformation to linearized Heisenberg-Langevin equations
describing the coupled light-matter system in the weak excitation limit. For
the simple lambda-type coupling scheme the generalized Morris-Shore
transformation reproduces the dark-state polariton solutions of slow light.
Here we treat a closed-loop dual-V scheme wherein two counter-propagating
control fields generate a quasi stationary pattern of two counter-propagating
probe fields -- so-called stationary light. We show that contrary to previous
predictions,there exists a single unique dark-state polariton; it obeys a
simple propagation equation.Comment: 6 pages, 2 figure
Slow light propagation in trapped atomic quantum gases
We study semi-classical slow light propagation in trapped two level atomic
quantum gases. The temperature dependent behaviors of both group velocity and
transmissions are compared for low temperature Bose, Fermi, and Boltzman gases
within the local density approximation for their spatial density profile.Comment: 9 pages, 2 figure
Efficient spatially-resolved multimode quantum memory
We propose a method that enables efficient storage and retrieval of a
photonic excitation stored in an ensemble quantum memory consisting of
Lambda-type absorbers with non-zero Stokes shift. We show that this can be used
to implement a multimode quantum memory storing multiple frequency-encoded
qubits in a single ensemble, and allowing their selective retrieval. The
read-out scheme applies to memory setups based on both
electromagnetically-induced transparency and stimulated Raman scattering, and
spatially separates the output signal field from the control fields
From Storage and Retrieval of Pulses to Adiabatons
We investigate whether it is possible to store and retrieve the intense probe
pulse from a -type homogeneous medium of cold atoms. Through numerical
simulations we show that it is possible to store and retrieve the probe pulse
which are not necessarily weak. As the intensity of the probe pulse increases,
the retrieved pulse remains a replica of the original pulse, however there is
overall broadening and loss of the intensity. These effects can be understood
in terms of the dependence of absorption on the intensity of the probe. We
include the dynamics of the control field, which becomes especially important
as the intensity of the probe pulse increases. We use the theory of adiabatons
[Grobe {\it et al.} Phys. Rev. Lett. {\bf 73}, 3183 (1994)] to understand the
storage and retrieval of light pulses at moderate powers.Comment: 15 pages, 7 figures, typed in RevTe
Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles
We describe a technique for manipulating quantum information stored in
collective states of mesoscopic ensembles. Quantum processing is accomplished
by optical excitation into states with strong dipole-dipole interactions. The
resulting ``dipole blockade'' can be used to inhibit transitions into all but
singly excited collective states. This can be employed for a controlled
generation of collective atomic spin states as well as non-classical photonic
states and for scalable quantum logic gates. An example involving a cold
Rydberg gas is analyzed
Quantum memory for photons: I. Dark state polaritons
An ideal and reversible transfer technique for the quantum state between
light and metastable collective states of matter is presented and analyzed in
detail. The method is based on the control of photon propagation in coherently
driven 3-level atomic media, in which the group velocity is adiabatically
reduced to zero. Form-stable coupled excitations of light and matter
(``dark-state polaritons'') associated with the propagation of quantum fields
in Electromagnetically Induced Transparency are identified, their basic
properties discussed and their application for quantum memories for light
analyzed.Comment: 13 pages, 6 figures, paragraph on photon echo adde
Three-dimensional theory for interaction between atomic ensembles and free-space light
Atomic ensembles have shown to be a promising candidate for implementations
of quantum information processing by many recently-discovered schemes. All
these schemes are based on the interaction between optical beams and atomic
ensembles. For description of these interactions, one assumed either a
cavity-QED model or a one-dimensional light propagation model, which is still
inadequate for a full prediction and understanding of most of the current
experimental efforts which are actually taken in the three-dimensional free
space. Here, we propose a perturbative theory to describe the three-dimensional
effects in interaction between atomic ensembles and free-space light with a
level configuration important for several applications. The calculations reveal
some significant effects which are not known before from the other approaches,
such as the inherent mode-mismatching noise and the optimal mode-matching
conditions. The three-dimensional theory confirms the collective enhancement of
the signal-to-noise ratio which is believed to be one of the main advantage of
the ensemble-based quantum information processing schemes, however, it also
shows that this enhancement need to be understood in a more subtle way with an
appropriate mode matching method.Comment: 16 pages, 9 figure
- …