43 research outputs found

    You can go your own way: effectiveness of participant-driven versus experimenter-driven processing strategies in memory training and transfer

    Get PDF
    Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either (1) mandated a specific strategy to increase deep, associative encoding, (2) attempted to suppress such encoding by mandating rote rehearsal, or (3) encouraged time and effort toward encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies

    Get the gist? The effects of processing depth on false recognition in short-term and long-term memory

    Get PDF
    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays

    Brain mechanisms of successful recognition through retrieval of semantic context

    Get PDF
    Episodic memory is associated with the encoding and retrieval of context information and with a subjective sense of reexperiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a "general recollection network" including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In this study, we used fMRI to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context) or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently defined ROIs and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience

    Adaptive task difficulty influences neural plasticity and transfer of training

    Get PDF
    The efficacy of cognitive training is controversial, and research progress in the field requires an understanding of factors that promote transfer of training gains and their relationship to changes in brain activity. One such factor may be adaptive task difficulty, as adaptivity is predicted to facilitate more efficient processing by creating a prolonged mismatch between the supply of, and the demand upon, neural resources. To test this hypothesis, we measured behavioral and neural plasticity in fMRI sessions before and after 10 sessions of working memory updating (WMU) training, in which the difficulty of practiced tasks either adaptively increased in response to performance or was fixed. Adaptive training resulted in transfer to an untrained episodic memory task and activation decreases in striatum and hippocampus on a trained WMU task, and the amount of training task improvement was associated with near transfer to other WMU tasks and with hippocampal activation changes on both near and far transfer tasks. These findings suggest that cognitive training programs should incorporate adaptive task difficulty to broaden transfer of training gains and maximize efficiency of task-related brain activity

    Aging and brain fitness (Commentary on Voelcker-Rehage et al. )

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78637/1/j.1460-9568.2009.07098.x.pd

    Working memory updating training promotes neural plasticity & behavioural gains: a systematic review & meta-analysis

    Get PDF
    Aims: Recent reviews yield contradictory findings regarding the efficacy of working memory training and transfer to untrained tasks. We reviewed working memory updating (WMU) training studies and examined cognitive and neural outcomes on training and transfer tasks. Methods: Database searches for adult brain imaging studies of WMU training were conducted. Training-induced neural changes were assessed qualitatively, and meta-analyses were performed on behavioural training and transfer effects. Results: A large behavioural training effect was found for WMU training groups compared to control groups. There was a moderate near transfer effect on tasks in the same cognitive domain, and a non-significant effect for far transfer to other cognitive domains. Functional neuroimaging changes for WMU training tasks revealed consistent frontoparietal activity decreases while both decreases and increases were found for subcortical regions. Conclusions: WMU training promotes plasticity and has potential applications in optimizing interventions for neurological populations. Future research should focus on the mechanisms and factors underlying plasticity and generalisation of training gains

    Association between polygenic risk for Alzheimer’s disease, brain structure and cognitive abilities in UK Biobank

    Get PDF
    Previous studies testing associations between polygenic risk for late-onset Alzheimer’s disease (LOAD-PGR) and brain magnetic resonance imaging (MRI) measures have been limited by small samples and inconsistent consideration of potential confounders. This study investigates whether higher LOAD-PGR is associated with differences in structural brain imaging and cognitive values in a relatively large sample of non-demented, generally healthy adults (UK Biobank). Summary statistics were used to create PGR scores for n = 32,790 participants using LDpred. Outcomes included 12 structural MRI volumes and 6 concurrent cognitive measures. Models were adjusted for age, sex, body mass index, genotyping chip, 8 genetic principal components, lifetime smoking, apolipoprotein (APOE) e4 genotype and socioeconomic deprivation. We tested for statistical interactions between APOE e4 allele dose and LOAD-PGR vs. all outcomes. In fully adjusted models, LOAD-PGR was associated with worse fluid intelligence (standardised beta [β] = −0.080 per LOAD-PGR standard deviation, p = 0.002), matrix completion (β = −0.102, p = 0.003), smaller left hippocampal total (β = −0.118, p = 0.002) and body (β = −0.069, p = 0.002) volumes, but not other hippocampal subdivisions. There were no significant APOE x LOAD-PGR score interactions for any outcomes in fully adjusted models. This is the largest study to date investigating LOAD-PGR and non-demented structural brain MRI and cognition phenotypes. LOAD-PGR was associated with smaller hippocampal volumes and aspects of cognitive ability in healthy adults and could supplement APOE status in risk stratification of cognitive impairment/LOAD

    The role of metamemory and personality in episodic memory performance in older adults

    Get PDF
    This study newly investigated the joint contribution of metamemory and personality (traits and facets) in explaining episodic memory (EM) performance in typically aging older adults. Forty-eight participants (age range: 64–75 years) completed a self-paced word list (SPWL) recall task, a metamemory questionnaire assessing perceived control and potential improvement (PCPI) and self-efficacy and satisfaction (SESA) regarding one’s mental abilities (e.g., memory), and the Big-Five Questionnaire. Based on the SPWL encoding strategies reported, participants were then classified as effective (N = 20) or ineffective (N = 28) memory strategy users. Hierarchical regression analyses showed that a better SPWL performance was predicted by higher levels of PCPI, Scrupulousness and Dominance personality facets. Effective memory strategy users, then, showed higher SPWL performance and Dominance (Energy facet) than ineffective ones. These findings suggest that both specific metamemory processes and personality facets predict better EM performance in older adults. Moreover, personality dispositions relating to Dominance seem to characterize individuals adopting effective memory strategies to support EM performance. These results represent first evidence of the role of both metamemory and personality—facets—in explaining older adults’ EM performance, which should thus be considered when assessing or training EM in old age
    corecore