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Abstract 

The efficacy of cognitive training is controversial, and research progress in the field requires an 

understanding of factors that promote transfer of training gains and their relationship to changes 

in brain activity. One such factor may be adaptive task difficulty, as adaptivity is predicted to 

facilitate more efficient processing by creating a prolonged mismatch between the supply of, and 

the demand upon, neural resources. To test this hypothesis, we measured behavioral and neural 

plasticity in fMRI sessions before and after 10 sessions of working memory updating (WMU) 

training, in which the difficulty of practiced tasks either adaptively increased in response to 

performance or was fixed. Adaptive training resulted in transfer to an untrained episodic memory 

task and activation decreases in striatum and hippocampus on a trained WMU task, and the 

amount of training task improvement was associated with near transfer to other WMU tasks and 

with hippocampal activation changes on both near and far transfer tasks. These findings suggest 

that cognitive training programs should incorporate adaptive task difficulty to broaden transfer of 

training gains and maximize efficiency of task-related brain activity. 

 

Keywords: COGNITIVE TRAINING, TRANSFER, fMRI, PLASTICITY, MEMORY, 

EXECUTIVE FUNCTION 
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Introduction 

Training cognitive processes such as memory and executive function can improve 

behavioral performance and drive changes on neural measures (Klingberg, 2010; Morrison and 

Chein, 2011; Hsu et al., 2014). However, a common criticism is that effects are often limited to 

the trained tasks, whereas transfer to untrained tasks is inconsistent. Some studies show “near 

transfer” within the same cognitive domain as trained tasks, but evidence of “far transfer”, or 

generalization across cognitive domains, is reported less frequently—and regarded more 

skeptically (Moody, 2009; Shipstead et al., 2012; Melby-Lervåg et al., 2016). Although the 

literature on training-induced plasticity has stimulated a great deal of interest in developing 

interventions to improve cognition (Ranganath et al., 2011; Vinogradov et al., 2012; Mishra and 

Gazzaley, 2014), a lack of understanding of the factors that mediate transfer effects has hindered 

translation of laboratory research into demonstrably effective programs. Given the wide 

variability in methodology across training studies, breadth of transfer may depend on how 

training is conducted. Here, we investigated the possibility that effective transfer depends, at 

least in part, on adapting the difficulty of training tasks to an individual’s current level of 

proficiency (i.e., adaptive training). That is, do successful cognitive training outcomes require an 

intervention that dynamically increases task demands? Previous studies have speculated that 

adaptivity may be a key to effective transfer (Holmes et al., 2009; Jaeggi et al., 2010b; Brehmer 

et al., 2012; Anguera et al., 2013), but systematic investigations are lacking. We sought to 

address this controversy by directly testing whether adaptive, relative to individualized but non-

adaptive, difficulty mediates behavioral and neural effects of cognitive training. 

According to a recent theoretical framework (Lövdén et al., 2010), effective transfer 

depends on how cognitive processes are trained—whereas transient cognitive challenges are only 
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sufficient to promote task-specific learning, sustained cognitive challenges are required to elicit 

lasting neural changes that underlie enhancement of a general cognitive function. Specifically, if 

environmental demand (e.g., the processing load of a working memory task) briefly approaches 

the upper limit of functional supply (e.g., working memory processing efficiency), then all 

available resources will be flexibly brought to bear, but actually raising the level of maximum 

function (e.g., improved processing efficiency) requires a prolonged mismatch in which 

environmental demand exceeds functional supply. Based on this model, we predicted that 

adaptively increasing training task difficulty would provide the necessary prolonged mismatch, 

thereby inducing plasticity that is associated with broader transfer and greater changes in task-

related brain activity than non-adaptive training. If adaptive training successfully improves 

processing efficiency, then training gains should generalize beyond superficially similar tasks to 

untrained tasks that rely on the same processing components (Jonides, 2004; Dahlin et al., 

2008b; 2009), resulting in far transfer. Additionally, improved processing efficiency should be 

reflected in decreased neural recruitment in task-related brain areas (Kelly and Garavan, 2005). 

A few studies have used functional magnetic resonance imaging (fMRI) to assess the neural 

effects of training and transfer by scanning untrained tasks as well as trained (criterion) tasks at 

pre- and post-training sessions (Dahlin et al., 2008b; Schneiders et al., 2012; Schweizer et al., 

2013; Heinzel et al., 2016), establishing that training-induced plasticity generalizes across tasks 

that engage overlapping brain areas, but adaptivity-related effects on fMRI outcome measures 

have never been studied. 

In the present study, we manipulated adaptivity in a training regimen targeting the core 

cognitive process of working memory updating (WMU), an executive function that controls 

updating of information that is active in working memory (Morris and Jones, 1990; Miyake et 
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al., 2000). We assessed behavioral change and neural plasticity in fMRI sessions before and after 

10 sessions of computerized training with visuospatial and verbal WMU tasks. Participants were 

randomly assigned to either an adaptive training (AT) group or a non-adaptive (NA) active 

control group. Training procedures were identical across the two groups, except for one critical 

difference. For AT participants, as task performance increased the number of updating operations 

(i.e., update level) was consequently increased, in order to adaptively and selectively increase the 

environmental demands on WMU processes. For NA participants, however, task difficulty was 

fixed at a relatively low level across all training days. Update level was individually set for each 

NA participant, in an effort to equate subjective difficulty across the active control group, as any 

single level of objective difficulty could produce higher or lower environmental demands based 

on participants’ pre-existing ability differences. 

Pre- and post-training MRI scanning sessions evaluated functional brain activity during a 

WMU criterion task modified from the visuospatial training task, an untrained spatial n-back 

task, and an untrained object-location association episodic memory task (Fig. 1). On the basis of 

previous studies reporting that WMU and episodic memory processing components of interest 

involve activation of striatum and hippocampus—subcortical structures long understood to 

contribute to learning and memory processes (Packard & Knowlton, 2002; Squire, 2004)—fMRI 

analyses in the present study focused on these structures as a priori regions of interest (ROIs). In 

particular, fMRI studies of WMU training have identified striatum as a specific site of training-

induced activity changes (Dahlin et al., 2008b; Kühn et al., 2012). Additionally, we examined 

hippocampus because it is known to show increased activation during the Object-Location 

Association task (Gould, 2005; de Rover et al., 2011), and it has also been implicated in 

visuospatial working memory tasks (Piekema et al., 2006; Hannula & Ranganath, 2008; see Nee 
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& Jonides, 2013 for review) similar to the scanned WMU tasks in the present study. Thus, 

guided by our hypothesis that adaptively increasing training task difficulty will broaden transfer 

of training gains across tasks that engage overlapping processing components and brain areas, we 

selected striatal and hippocampal ROIs to examine adaptivity-related effects of WMU training 

and to test the prediction that improved WMU processes would facilitate episodic memory 

encoding to induce far transfer of training gains.  

Materials and Methods 

Participants 

63 healthy young adults (18-29 years old; M = 20.8, SD = 2.4) were recruited from the 

University of California at Davis (UCD) community. Participants were right-handed, native 

English speakers, with normal or correct-to-normal vision, no reported history of neurological or 

psychiatric illness, no current use of psychoactive medication, and no known MRI 

contraindications. 48 females and 15 males participated. The research protocol was approved by 

the UCD Institutional Review Board, and all participants provided written informed consent and 

were paid for their participation. Compensation was $10 for each of nine behavioral-only 

sessions, $20 for each of three sessions with MRI scanning, plus a $50 bonus for completing all 

12 of the study sessions. 

In the initial enrollment phase, 26 participants were assigned to the adaptive training 

(AT) group and 19 participants were assigned to the non-adaptive (NA) active control group. 

Assignment was random and single-blind, with the restriction that the groups did not run 

simultaneously (due to the delivery of at-home training sessions that differed by group 

assignment), so recruitment occurred in blocks alternating between the two groups. In a later 
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enrollment phase, 18 additional participants were recruited into a no-contact control (NCC) 

group.  

Two participants (both from the AT group) withdrew prior to study completion; one due 

to claustrophobia at the first scanning session and one due to personal reasons after completing 

five study sessions. Five other participants assigned to the AT group failed to meet inclusion 

criteria due to a lack of improvement within the training protocol itself, defined by a measure of 

training gain (linear slope calculated from the maximum level of performance achieved at each 

training session) that was negative for one or both of the training tasks. Notably, negative 

training slopes indicate that these participants’ training task performance declined to, and never 

recovered from, a floor level of difficulty even lower than the fixed levels performed by non-

adaptive active control participants. Because the adaptivity manipulation in this study is 

operationalized by increasing task difficulty in response to performance improvements, and this 

defining feature was not experienced by AT participants who failed to improve on the trained 

tasks, their data were excluded from the present analysis (they are to be reported in a separate 

paper investigating predictors of responsiveness to training). Thus, the final sample included in 

the results reported below consists of 19 AT participants, 19 NA participants, and 18 NCC 

participants. Mean age and gender ratio were equated across conditions (Fs < 1).    

Materials 

Training Tasks 

The training protocol consisted of two tasks designed to target working memory updating 

(WMU) processes, using different modalities in order to discourage task-specific strategies and 

to promote transfer. Example trials from both tasks are depicted in Fig. 2, below graphs of their 
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respective training trajectories for AT participants. The training tasks were administered, and 

responses were collected, using Presentation software (Version 14.9, www.neurobs.com). 

Matrix Updating (MU) is a visuospatial working memory task that requires updating the 

location of multiple dots within a 4x4 matrix (Chen and Li, 2007). On MU trials, a matrix with 

colored dots (red, orange, green, and blue) in four of its cells was first displayed for 5000 ms, 

then in the center of the empty matrix, colored arrows (pointing up, down, left, or right) were 

presented sequentially for 1750 ms each with a 250 ms interstimulus interval. Participants were 

instructed to follow each arrow by mentally moving the dot of the same color one cell in that 

direction. After a variable number of arrows, a colored pointer appeared in the center of the 

empty matrix, prompting the participant to respond by using the mouse to move the pointer and 

click on the current location of the dot of the same color. The MU task was divided into blocks 

of five trials each, with feedback (number of correct and incorrect responses) presented at the 

end of each block. Within each task block, stimuli (location of dots; color and direction of 

arrows) were randomized on a trial-by-trial basis with the constraint that each arrow must point 

its corresponding dot in a valid direction: always within the matrix boundaries and never into a 

cell currently occupied by another dot. MU task duration was approximately 25-30 min. 

Keep Track (KT) is a verbal working memory task that requires updating the identity of 

the most recently studied words in multiple semantic categories (Yntema, 1963). On KT trials, 

the names of four categories were displayed in boxes at the bottom of the screen, while in the 

center of the screen, exemplar words from the categories were presented sequentially for 2000 

ms each with a 1000 ms interstimulus interval. Participants were instructed to mentally place 

each presented word into the box for its corresponding category. After a variable number of 

words, the box belonging to one of the four categories was highlighted, prompting the participant 
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to respond by using the keyboard to type the last word that was placed into that box. Four novel 

categories (and their respective word lists) were used at each of the 10 training sessions. In order 

to create a total of 40 categorized word lists of sufficient length, stimuli were collected from 

multiple published word pools (Murdock, 1976; Howard, 1979; van Overschelde et al., 2004). At 

each training session, the KT task began with a screen listing all of the words in the lists to be 

used in that session, in order to familiarize participants with the correct category assignments. 

Within each task block, stimuli were randomized with the constraint that all four categories were 

sampled (in any order) before any category was sampled again. In addition, trials contained 

occasional “distractor” words that did not belong to any of the given categories, which 

participants were instructed to ignore. KT task duration was approximately 20-25 min. 

For both training tasks, level of difficulty can be modulated by increasing or decreasing 

the update level, i.e., the number of updates on each trial. At each update level, to minimize the 

predictability of when in a trial the response would be required, the exact number of updates was 

randomly selected from the update level +/- 1. For example, at the 7-update level of the MU task, 

the number of arrows on a given trial could be 6, 7, or 8. Importantly, in both training tasks, the 

working memory load was constant (always four colored dots or four categories) while the 

adaptivity manipulation was achieved solely by varying the update level, allowing the training 

protocol to specifically target WMU processes.  

[FIG. 1 ABOUT HERE] 

Scanned Tasks 

Matrix Updating was modified from the training task version to an event-related fMRI 

design, serving as a criterion task performed at all study sessions (see also Dahlin et al., 2008b). 
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The structure and timing of the criterion task trials were the same as the training task version, 

except the response phase was changed to yes/no recognition: instead of freely moving a pointer 

to identify the updated location of a particular dot, one of the four colored dots reappeared in the 

matrix after the updating phase and the task was to respond by pressing one button if it was the 

correct, current location of that dot and pressing a second button if it was not (see Fig. 1A). 

Additionally, the Matrix Updating criterion task was not adaptive but instead consisted of three 

trial types: 7-Updates, with a high updating demand of seven colored arrows presented during 

the delay period; 4-Updates, with a lower updating demand of four colored arrows; and 0-

Updates, a maintenance-only baseline condition in which four gray arrows are presented and thus 

the recognition probe after the delay period simply referred to the original location of the colored 

dots on that trial. The task was divided into four runs of 11 trials each, for a total of 16 trials in 

each of the two active updating conditions and 12 trials in the baseline condition. For each trial 

type, the dependent variable was the proportion of correct trials. Trial order was unique across 

runs and optimized using optseq2 (Dale, 1999), with the intertrial interval varying between 2 and 

10 s (M = 4 s). Total duration of the four runs was approximately 20 min. 

Spatial N-Back was selected as a scanned task representing near transfer, based on the 

prediction that it and the WMU training tasks engage overlapping processing components and 

brain areas. Based on an n-back paradigm used by Jaeggi and colleagues (2010a), stimuli were 

blue squares that appeared in one of eight locations (the perimeter of an unseen 3x3 matrix) for 

500 ms each with a 2500 ms interstimulus interval, and the task was to respond by pressing one 

button when the current location matched the location presented n trials earlier and pressing a 

second button when there was not a match (see Fig. 1B). Each block consisted of 12 trials, of 

which three were targets. The N-Back (NB) task was divided into two runs of nine blocks each, 
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in a counterbalanced order alternating among three trial types determined by the value of n: 3-

Back, which presents a high updating demand; 2-Back, which presents a lower updating demand; 

and 0-Back, a baseline condition in which the target location was always the upper left corner of 

the screen. For each trial type, the dependent variable was overall accuracy. Total duration of the 

two NB runs was approximately 13 min. 

Object-Location Association is a measure of visual episodic memory, selected as a 

scanned task representing far transfer. Based on a paired associate learning paradigm adapted for 

fMRI testing (Gould, 2005; de Rover et al., 2011), the task consisted of blocks of trials arranged 

into an encoding phase followed by a retrieval phase (see Fig. 1C). Stimuli were unique 

kaleidoscope images (“objects”) from Voss and colleagues (2008) that were presented 

sequentially for 3 s each at random locations within a 4x4 matrix during the encoding phase, and 

participants were instructed to remember which object appeared in which cell, for the subsequent 

retrieval phase (separated from the last encoding trial by a 4 s delay). On each retrieval trial, one 

of the cells in which an object had appeared was highlighted for 5 s, and the task was to make a 

button press response to select the object associated with that location from among three options 

displayed at the bottom of the screen (one target and two foils that also appeared during the 

encoding phase). Every object-location pair presented during an encoding phase was probed 

during the subsequent retrieval phase. The Object-Location (OL) task consisted of two trial 

types: 8-Associates, with a high memory load of eight object-location pairs (i.e., eight encoding 

trials followed by eight retrieval trials); and 6-Associates, with a lower memory load of six pairs. 

There were also baseline task blocks, to control for perceptual and motor processing in the 

absence of memory load. In the control “encoding” phase of the baseline condition, six gray 

squares were presented sequentially within the matrix and participants were instructed to rest 
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with their eyes open but not try to remember anything about the squares. In the control 

“retrieval” phase, another six gray squares were presented sequentially and participants were 

instructed to make a button press response for each square to report the row of the matrix in 

which it appeared. The OL task was divided into two runs of six blocks each, in a 

counterbalanced order alternating among the two active trial types and the baseline condition. 

For each trial type, the dependent variable was the proportion of correct retrieval trials. Total 

duration of the two OL runs was approximately 14 min. 

Order of the three scanned tasks was counterbalanced across participants, but task order 

was held constant across the scanning sessions for each participant.  

Other Transfer Tasks 

 To more broadly assess transfer and test for nonspecific effects of the training protocols, 

a battery of untrained tasks was administered outside of the scanner after both pre- and post-

training sessions. The executive functions of Updating, Inhibition, and Shifting (Miyake et al., 

2000) were measured, respectively, with a Letter Running Memory task (Pollack et al., 1959; 

Morris and Jones, 1990), a Counting Stroop task (Bush et al., 1998), and a Global/Local task 

(Navon, 1977). Working memory capacity was measured for verbal stimuli with the Automated 

Operation Span task (Unsworth et al., 2005), and for visual stimuli with a change localization 

(Gold et al., 2006) version of the Change Detection task (Luck and Vogel, 1997). Verbal 

episodic memory was measured with the Hopkins Verbal Learning Test–Revised (Benedict et 

al., 1998), fluid intelligence with Raven’s Advanced Progressive Matrices (Raven et al., 1998), 

sustained attention with the Paced Auditory Serial Addition Test (Gronwall, 1977; Fischer et al., 

1999), and processing speed with the WAIS-III Digit-Symbol Substitution test (Wechsler, 1997). 
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Additionally, to measure individual differences in implicit beliefs about the malleability of 

intelligence (see also Jaeggi et al., 2014), the 3-item Theories of Intelligence Scale (Dweck and 

Henderson, 1988) was administered before the task battery at the first study visit only. 

Alternate versions of the standard neuropsychological measures were used for pre- and 

post-training assessments, with order of the two versions counterbalanced across participants. 

For the computerized tasks, validated alternate versions were not available, but stimuli were 

randomized at each assessment to minimize practice effects. Comparing AT, NA, and NCC 

groups, and controlling for pre-training performance, there was no significant effect of group on 

post-training scores for any tasks in the battery. 

Design and Procedure 

 The study consisted of a total of 12 visits scheduled over the course of three weeks. The 

first and last study visits involved MRI scanning sessions and other transfer tasks administered 

outside of the scanner, and the remaining 10 visits were training sessions. In addition, an early-

training MRI scanning session was included in the third study visit; data from the scanned tasks 

at that session are to be reported in a separate paper. Four study visits were scheduled per week, 

and, across participants, pre- and post-training scanning sessions (i.e., the first and last study 

visits) were separated by 16-18 calendar days. The scanning sessions were conducted at the UCD 

MRI Facility for Integrative Neurosciences, using a 3T Siemens Skyra scanner (imaging 

parameters are detailed below). Any participant who had no previous experience in an MRI 

environment completed a brief mock scanning session prior to the first study visit. Practice trials 

were provided before each task, and Presentation (www.neurobs.com) and E-Prime (Psychology 
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Software Tools, Pittsburgh, PA) software was used to collect behavioral data from the 

computerized tasks. 

The first training session (Visit 2) was completed in the laboratory under experimenter 

supervision, as was the second training session because it coincided with the early-training 

scanning session which required a laboratory visit. Thereafter, the remaining eight training 

sessions (Visits 4-11) were completed on participants’ home computers according to the study 

schedule. Task performance was monitored from encrypted data files transmitted to study staff 

via e-mail at the end of each at-home training session. To monitor compliance remotely, a secure 

website logged each time the training program was run, and participants were contacted 

promptly by an experimenter if a scheduled session was missed. Every participant who 

completed the study performed all 10 training sessions. 

Participants assigned to the AT group started their first training session at the 4-update 

level for MU and the 5-update level for KT. For each subsequent session, each task was started 

at the level determined by the final block of the previous session. Adaptive difficulty was 

implemented in both tasks with an algorithm that applied an 80% accuracy criterion after every 

five trials. If at least four of the preceding trials were answered correctly, the update level was 

increased by one for the next five trials. Otherwise, the update level was decreased by one for the 

next five trials (down to a minimum 3-update level for MU and 4-update level for KT). Across 

training sessions, as the number of updates progressively increased with increasing levels of 

difficulty, the algorithm reduced the total number of task blocks in order to preserve a relatively 

constant duration for each training session (e.g., it takes approximately the same amount of time 

to complete eight blocks of MU trials at an average of the 10-update level as it does six blocks of 

MU trials at an average of the 16-update level). 
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Participants assigned to the NA group started their first training session—and remained 

for that and all subsequent sessions—at an individualized level of difficulty between the 5- and 

9-update level for MU and between the 6- and 8-update level for KT. Participants were assigned 

to levels approximating the number of updates they would be predicted to achieve by the end of 

a first training session under adaptive conditions, on the basis of a pre-training measure of 

working memory capacity (Operation Span), calculated using a regression equation derived from 

pilot data. Consequently, although all NA participants completed the training tasks at a fixed and 

relatively low level of difficulty, the cognitive demand was deliberately set not so low as to 

induce boredom and disengagement (which has been a complaint rightly levied against less-

active non-adaptive control conditions in previous training studies; e.g., as discussed in Morrison 

and Chein, 2011). Furthermore, for NA participants as well as AT participants, the exact number 

of updates was unpredictable on each trial because it was randomly selected from the update 

level +/- 1.  

The NCC group was included to assess practice effects in the transfer task behavioral 

data. Participants in this group performed the same battery of scanned tasks and other transfer 

tasks, in three sessions scheduled at the same intervals (pre-, early-, and post-training) as 

participants in the active updating conditions, but were not scanned and completed no training 

sessions between their study visits. To control for environmental influences on performance, 

NCC participants completed the three “scanned” tasks in a mock scanner, using the same display 

and response collection equipment as at the UCD MRI Facility, while listening to an EPI pulse 

sequence recording through headphones during the task runs.  

MRI Acquisition and Processing 
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 At each scanning session, a multi-band gradient-echo EPI sequence (repetition time [TR] 

= 1220 ms; echo time [TE] = 24 ms; multi-band factor = 2; flip angle = 67°; field of view [FOV] 

= 192 mm; 64 × 64 matrix; 38 slices; 3.0 mm isotropic voxels) was used to obtain functional 

images sensitive to BOLD contrast. In each functional run, the first four volumes were discarded 

to allow for signal equilibration. The total number of volumes collected was 248 in each Matrix 

Updating criterion task run, 320 in each Spatial N-Back run, and 331 in each Object-Location 

Association run. An MP-RAGE sequence (TR = 1800 ms; TE = 2.96 ms; flip angle = 7°; FOV = 

256 mm; 256 × 256 matrix) was used to obtain high-resolution T1-weighted anatomical images 

at the end of each scanning session. 

 For each participant, anatomical images acquired at each session were averaged using the 

mri_robust_template program (Reuter et al., 2012) and the average image was used as an 

unbiased template for spatial coregistration across sessions. Data were preprocessed using SPM8 

(www.fil.ion.ucl.ac.uk/spm). Each participant’s functional images were realigned using a six-

parameter rigid body transformation, coregistered to their average anatomical image, normalized 

to MNI (Montreal Neurological Institute) space using affine and nonlinear transformations, and 

spatially smoothed using a 6-mm isotropic FWHM Gaussian kernel. Each participant’s average 

anatomical image was segmented, and the conjunction of their normalized, spatially smoothed 

gray and white matter images was used to calculate a brain-only explicit mask used in functional 

analyses. 

Analysis 

For each task, at each scanning session, BOLD responses were analyzed using the 

general linear model implemented in SPM8. Covariates of interest were constructed by 
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convolving vectors of predicted neural activity with a canonical hemodynamic response function. 

To account for residual variance because of head movement, motion parameters estimated at the 

realignment stage of preprocessing and motion spikes identified using the ArtRepair toolbox 

(cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html) were included in each 

model as covariates of no interest.  

 The Matrix Updating criterion task was analyzed in an event-related design, with separate 

regressors modeling matrix, updating, and probe period activation as a function of trial type (7-

Updates/4-Updates/0-Updates) and response accuracy (correct/incorrect). First-level analysis 

was performed using the general linear model and applying a high-pass filter with a 200-sec 

cutoff period. The primary contrast of interest for high vs. low demand on WMU processes 

evaluated probe-period activation on correct 7-update trials vs. correct 4-update trials. 

 The other scanned tasks were analyzed in block designs, with first-level analysis 

performed using the general linear model and applying a high-pass filter with a 128-sec cutoff 

period. Spatial N-Back had separate regressors for trial type (3-Back/2-Back/0-Back), and the 

primary contrast of interest evaluated 2- and 3-Back blocks vs. 0-Back blocks. Object-Location 

Association had separate regressors modeling encoding and retrieval phase activation as a 

function of trial type (8-Associates/6-Associates/baseline), and the primary contrast of interest 

evaluated encoding-phase activation in 6- and 8-Associate blocks vs. baseline blocks. 

To examine task- and adaptivity-related effects in brain areas associated with the putative 

processing components—WMU and episodic memory—involved in the scanned tasks, a priori 

ROIs were defined by computing the intersections between bilateral caudate, putamen, and 

hippocampus anatomical ROIs from the LONI Probabilistic Brain Atlas (Shattuck et al., 2008) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

and each participant’s normalized, spatially smoothed gray matter image from their segmented 

average anatomical image. For the primary contrast of interest from each task, for each 

participant at each scanning session, mean parameter estimates were extracted from the mask 

images of each ROI. Thereafter, for each ROI analysis, post-training activation was entered as 

the dependent variable in an ANCOVA with group (AT/NA) as a fixed factor and pre-training 

activation as a covariate (reported in Table 2). An exploratory whole-brain analysis subsequently 

investigated adaptivity-related activation changes not restricted to a priori ROIs, in a mixed 

design ANOVA with group (AT/NA) as the between-subjects factor and session (pre-

training/post-training) as a repeated measure (reported in Table 3). 

To analyze behavioral data from the scanned tasks, post-training performance for each 

measure was entered as the dependent variable in an ANCOVA with group (AT/NA/NCC) as a 

fixed factor and pre-training performance as a covariate (reported in Table 1). For AT 

participants, training gains were analyzed using repeated-measures ANOVA on the maximum 

update level achieved in each training session, for each task. Amount of improvement on the 

trained tasks (i.e., Training Slope) was indexed by averaging the linear slopes calculated from 

the maximum update level achieved in each training session, for each task. 

[FIG. 2 ABOUT HERE] 

Results 

As expected, AT participants showed significant improvements over the course of 

training – as indicated by a significant effect of training day on the maximum update level 

achieved in each session – for both training tasks (Fs > 36.98; ps < .001). Training trajectories 

are shown in Fig. 2. On average, by the last training day, AT participants were performing 
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visuospatial trials at the 24-update level and verbal trials at the 22-update level. While such gains 

in WMU performance from the first training day are notable, transfer effects are of greater 

interest. That is, did training task improvements transfer to untrained tasks? Data in pre- and 

post-training fMRI sessions were obtained from a WMU criterion task (Matrix Updating), which 

was the visuospatial training task modified for scanning, an untrained WMU task (Spatial N-

Back) to assess near transfer, and an untrained episodic memory task for which improved WMU 

processes may support more effective encoding (Object-Location Association) to assess far 

transfer. Each of the three scanned tasks included high-difficulty, low-difficulty, and baseline 

trial types. Because the plasticity induced through sustained neurocognitive challenge is 

proposed to raise the level of maximum function (Lövdén et al., 2010), we predicted that the 

largest performance increases and changes in brain activity related to adaptive training would be 

found on high-difficulty trials. Behavioral data from the AT and NA groups were compared to a 

no-contact control (NCC) group that completed the same criterion and transfer tasks (without 

fMRI) but with no intervening WMU training (see Table 1). For post-training performance, 

controlling for pre-training performance, there was a significant effect of group on high-

difficulty Matrix Updating trials (F(2,52) = 4.50, p < .05, ηp
2 = .15), and high-difficulty Object-

Location Association trials (F(2,52) = 3.75, p < .05, ηp
2 = .13). As shown in Fig. 3, performance 

increases were largest for AT participants, those predicted to benefit from a prolonged mismatch 

between functional supply and environmental demand. The Spatial N-Back task showed no 

significant effect of group on any trial type (Fs < 1), reflecting near-ceiling performance1.  

 [TABLE 1 ABOUT HERE] 

                                                           
1 The same null result is found if the proportion of hits minus false alarms (Pr) is used as the dependent variable for 
Spatial N-Back instead of overall accuracy. 
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[FIG. 3 ABOUT HERE] 

Our next analyses investigated individual differences in responsiveness to training and 

transfer to untrained tasks. Because progressively higher levels of environmental demand are 

proposed to induce proportionally larger increases in functional supply (Lövdén et al., 2010), we 

predicted that greater amounts of adaptive training task improvement would be associated with 

larger transfer effects. To index relative training gains among AT participants, linear slopes were 

calculated for each training task from the maximum level of difficulty achieved in each session, 

and averaged to create a Training Slope variable. Controlling for pre-training performance, 

partial correlations showed that Training Slope was significantly predictive of post-training 

performance for high-difficulty Spatial N-Back trials (rp = .50, p < .05), with a marginal effect 

for high-difficulty Matrix Updating trials (rp = .42, p < .10). For both tasks, greater post-training 

performance was associated with greater improvement on the trained tasks. 

Having established that adaptive WMU training increased transfer to untrained tasks, we 

next analyzed fMRI data in order to determine the neural mechanisms of these behavioral 

effects. Region of interest (ROI) analyses were performed for brain areas associated with the 

putative processing components—WMU and episodic memory—involved in the scanned tasks. 

For each task, at each scanning session, a primary contrast of interest was computed for high vs. 

low demand on WMU processes, and mean parameter estimates were extracted from 

anatomically-defined a priori ROIs in bilateral striatum (caudate and putamen) and bilateral 

hippocampus. For the Matrix Updating criterion task, controlling for pre-training activation, 

there was a significant effect of group on post-training activation in all ROIs (see Table 2). As 

shown in Fig. 4, activation decreases were greater for AT than NA participants. To verify the 

selectivity of this adaptivity-related change in brain activity, we also investigated activation 
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changes in the bilateral occipital pole, which was not predicted to be sensitive to the adaptive 

training manipulation. No significant effect of group was found in this control region (F < 1). 

Within the AT group, partial correlations showed that Training Slope significantly predicted 

post-training activation, controlling for pre-training activation, in bilateral hippocampus ROIs for 

both the Spatial N-Back task and the Object-Location Association task (|rp|s > .49; ps < .05). For 

both tasks, in both hippocampus ROIs, greater post-training deactivation was associated with 

greater improvement on the trained tasks.  

[TABLE 2 ABOUT HERE] 

[FIG. 4 ABOUT HERE] 

 As working memory and episodic memory tasks can be expected to recruit brain regions 

in addition to striatum and hippocampus (Wager & Smith, 2003; Spaniol et al., 2009; Ranganath 

& Ritchey, 2012; Nee et al., 2013), we supplemented the ROI analyses with an exploratory 

whole-brain analysis to identify all significant regions of adaptivity-related activation changes in 

the primary contrast of interest from each scanned task, using a cluster-corrected FWE threshold 

of p < 0.05. In the Matrix Updating criterion task, as shown in Fig. 5, the group by session 

interaction revealed greater activation decreases for AT than NA participants in bilateral 

striatum, consistent with ROI analysis, and also bilateral prefrontal, bilateral temporal, and left 

parietal regions. This analysis did not identify significant hippocampal clusters. The equivalent 

whole-brain group by session interaction analyses performed for the Spatial N-Back task and the 

Object-Location Association task yielded no suprathreshold clusters in either case (see Table 3 

for the results summary of exploratory whole-brain interaction effects). 

[FIG. 5 ABOUT HERE] 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 
 

[TABLE 3 ABOUT HERE] 

Discussion 

The goal of the present study was to determine whether cognitive training outcomes 

depend on how processes are trained. Our results demonstrate that adaptive task difficulty is one 

key factor that can influence breadth of transfer and efficiency of brain activity. Adaptive WMU 

training resulted in transfer to an episodic memory task supported by WMU processes, and 

activation decreases in striatum and hippocampus ROIs on the scanned WMU criterion task. 

Notably, the detected transfer effects were reliably larger in the adaptive training group than in a 

closely matched non-adaptive active control group that performed the same training tasks for the 

same number of sessions. Furthermore, the amount of adaptive training task improvement was 

associated with near transfer to other WMU tasks, and with hippocampal activation changes on 

untrained tasks measuring both near and far transfer. Additionally, adaptivity-related transfer 

effects appeared at high levels of task difficulty. These findings are consistent with the proposal 

that sustained neurocognitive challenge is a mediator of behavioral and neural plasticity (Lövdén 

et al., 2010).  

By demonstrating an important role for adaptive task difficulty in inducing plasticity, our 

fMRI data reveal novel information about the neural effects of adaptive training, with adaptivity-

related activation decreases implicating increased neural efficiency (Kelly and Garavan, 2005; 

Lövdén et al., 2010) during task performance. The post-training activation decreases observed in 

the present study contribute to a literature in which training-induced changes in fMRI outcome 

measures are inconsistent, with activation increases, functional reorganization, and more 

complex dynamics of brain activity changes also found over the course of cognitive training 
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(Klingberg, 2010; Morrison and Chein, 2011; Hsu et al., 2014). Specifically regarding WMU 

training, previous studies have reported striatal activation increases after 15 training sessions 

(Dahlin et al., 2008b) and striatal activation increases after about 5 training sessions followed by 

decreases after more than 50 training sessions (Kühn et al., 2012), indicating that the temporal 

dynamics of changes in brain activity induced by WMU training can be nonmonotonic. For 

evaluating these past findings in light of the present study, an important difference is that both 

previous studies used training tasks in which the level of difficulty increased according to a 

predetermined schedule, or was capped within a restricted range, and thus was not continuously 

adaptive. In the present study, training task difficulty was individually adapted within sessions in 

response to performance in the AT group, or individually assigned on the basis of pre-training 

working memory capacity in the NA group, so that the group comparison would isolate the 

effects of improved processing efficiency realized through continuously adaptive WMU training.  

A recent study in older adults examined fMRI data before and after an n-back training 

program which was continuously adaptive, and found training-related activation decreases in 

lateral prefrontal cortex on an n-back task and also on an untrained WMU task (Heinzel et al., 

2016). No striatal activation changes were reported, however a number of methodological 

differences between this study and ours limit comparability of fMRI results, including the age 

group studied, the tasks scanned, the use of a no-contact rather than active control group for 

comparison, and the use of a whole brain voxelwise analysis approach rather than a focus on a 

priori ROIs. Nevertheless, the findings of Heinzel and colleagues (2016) associating adaptive 

training with decreased recruitment of task-related brain areas, and with transfer to untrained 

tasks, are consistent with our primary results. Moreover, our own exploratory whole-brain group 

by session interaction analysis also detected activation decreases after adaptive training in 
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prefrontal regions which have been previously associated with WMU processes (Wager & 

Smith, 2003; Nee et al., 2013). 

Although an exploratory whole-brain approach identified adaptivity-related activation 

changes on the scanned WMU criterion task in prefrontal as well as temporal, parietal, and 

striatal regions (as shown in Fig. 5),  a priori ROIs for our analyses specifically focused on 

striatum―where previous fMRI studies of WMU training have reported activation changes―and 

hippocampus―which is associated with episodic memory tasks and also visuospatial working 

memory tasks―in order to test the prediction that adaptive difficulty would broaden transfer of 

training gains across tasks that engage overlapping processing components and brain areas. As 

shown in Fig. 4, greater criterion task activation decreases in these subcortical areas were 

observed after 10 sessions of adaptive, relative to individualized but non-adaptive, WMU 

training. Furthermore, greater amounts of adaptive training task improvement were associated 

with greater activation decreases in bilateral hippocampus on untrained visuospatial working 

memory and episodic memory tasks. Evidence that interactions between striatal and hippocampal 

regions support episodic memory (Sadeh et al., 2011; Nyberg et al., 2016) along with 

computational models of working memory incorporating striatal and hippocampal connectivity 

(Hazy et al., 2006) offer a potential neural mechanism for our findings that adaptive WMU 

training resulted in transfer to episodic memory task performance and activation changes in 

caudate, putamen, and hippocampus ROIs. 

The present study stands out from much of the cognitive training literature by showing 

what is conventionally accepted as far transfer, with training-related improvements in working 

memory generalizing to an untrained episodic memory task. Although there are some previous 

reports of transfer to episodic memory from working memory training (Rudebeck et al., 2012) 
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and from multi-domain training (Schmiedek et al., 2010; Toril et al., 2016), many studies have 

failed to find far transfer effects across cognitive domains, including other training regimens 

specifically targeting WMU (Dahlin et al., 2008a). As with interpreting differences in brain 

activity changes between the present study and previous fMRI studies of WMU training, 

methodological variations may partly account for why our training protocol was associated with 

far transfer while others were not. Continuously adaptive training task difficulty with no upper 

limit is a feature which our study has in common with a previous study that showed transfer to 

episodic memory was predicted by amount of improvement on an adaptive spatial working 

memory task (Rudebeck et al., 2012), and which is different from a previous WMU training 

study where all participants achieved the highest available level of training task difficulty and 

minimal evidence was found for far transfer (Dahlin et al., 2008a). The theoretical framework of 

Lövdén and colleagues (2010) proposes that cognitive challenges must be sustained (e.g., 

continuously increasing environmental demands) rather than transient in order to increase 

functional supply, therefore an adaptive training protocol in which the level of difficulty is 

capped within a restricted range may be insufficient to induce plasticity that is associated with 

far transfer. Additionally, adaptivity-related transfer effects in our study were captured by high-

difficulty trials, consistent with the prediction that raising the level of maximum function through 

the manifestation of plasticity would enable previously unattainable high levels of task difficulty 

to be met. This interpretation is consistent with results from a recent study showing that transfer 

to a delayed matching-to-sample task was predicted by amount of improvement in high-difficulty 

blocks of a non-adaptive n-back training program (Beatty et al., 2015). It is possible that near 

transfer was not found on the Spatial N-Back task in our study because the 3-Back trial type was 

not sufficiently difficult for healthy young adult participants, as their pre-training scores suggest. 
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 Notably, the far transfer observed in the present study was restricted to the scanned 

visual episodic memory task and not found within a battery of untrained tasks administered 

outside of the scanner including measures of verbal episodic memory and also fluid intelligence, 

the cognitive domain which has been the focus of much controversy regarding far transfer effects 

from working memory training (Redick et al., 2013; Au et al., 2015; Melby-Lervåg et al., 2016; 

Greenwood & Parasuraman, 2016). A measure of fluid intelligence also may be considered to 

represent transfer “farther” from the training tasks in the present study than a measure of visual 

episodic memory such as the Object-Location Association task. In this respect, although 

generalization of training gains from working memory to episodic memory is a standard for far 

transfer in the cognitive training literature (Ranganath et al., 2011; Rudebeck et al., 2012), 

breadth of transfer can be classified along a continuum (Barnett & Ceci, 2002) and thus skeptics 

may question whether far transfer to an episodic memory task supported by WMU processes is 

“far enough” to substantiate the efficacy of cognitive training. The Object-Location Association 

task used as the scanned task representing far transfer in this study shares features with the 

visuospatial WMU training task such as the binding of items and spatial context, in addition to 

demands on executive function. Although conventional models of memory assign the two tasks 

to different cognitive domains, previous studies demonstrating that processing components 

involved in working memory and episodic memory are not cleanly dissociable (Ranganath & 

Blumenfeld, 2005; Nee & Jonides, 2013) suggest that these putatively separate memory domains 

likewise can be conceptualized along a continuum, with some components—such as the 

executive function of updating—contributing to processing under both subspan and supraspan 

conditions. Indeed, shared core cognitive processes appear to account for the transfer from 
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working memory training to improved episodic memory task performance that was predicted and 

subsequently observed in this study. 

The present study was designed to selectively manipulate the factor of adaptive difficulty 

between two groups otherwise performing the same WMU training tasks. An alternative 

interpretation of our results is that the group difference was driven by variable task difficulty, 

rather than adaptive difficulty per se. A recent behavioral study (Bastian and Eschen, 2016) 

compared conditions in which the difficulty of working memory training tasks was adaptive, 

self-selected, or randomly varied, and found that all three procedures for varying the level of 

difficulty produced equivalent improvement on trained tasks, relative to an active control group. 

However, they also found that transfer effects on untrained working memory tasks and far 

transfer (reasoning) tasks did not significantly differ among the training groups and the active 

control group, and thus could not draw conclusions about whether transfer effects such as those 

observed in the present study are likely to be driven by adaptivity or variability of task difficulty. 

This is an important issue for future studies to further explore. Another study examining 

mechanisms of training-induced plasticity compared a group that received adaptive working 

memory training with an active control group in which task difficulty was yoked to the 

performance of participants in the adaptive group, and was thus variable but not individually 

adaptive (McKendrick et al., 2014). The yoked group appeared to reach a performance limit 

towards the end of the course of training as their performance improvements attenuated relative 

to the adaptive group, and differential effects were also found in near infrared spectroscopy 

(NIRS) hemodynamic response measurements across sessions, refuting the hypothesis that 

adaptive task difficulty and variable task difficulty are similarly effective. 
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Progress in cognitive training research requires systematic investigations of the factors 

that influence transfer of training gains, and the neural mechanisms involved. Comparisons 

across studies are difficult to draw when training protocols differ not only in adaptivity but also 

frequency and intensity of training, and outcome measurement. In response to recent critiques of 

the wide variability in training study methodology emphasizing the need for greater experimental 

rigor and protocol standardization (Shipstead et al., 2012; Green et al., 2014; Noack et al., 2014), 

our findings support the use of adaptive training as a best practice, at least for targeting WMU 

processes. Although mixed findings in the cognitive training literature suggest that adaptively 

increasing training task difficulty is neither necessary nor sufficient to promote transfer, our data 

show that an optimal design should use adaptive, rather than non-adaptive, training when 

possible. The present results have important implications for development of cognitive training 

programs, by demonstrating that adaptive task difficulty influences neural plasticity and transfer 

of training. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

29 
 

Acknowledgements 

This work was supported by NIH grants R01MH068721, R01MH105411, and 

F32MH096469.We thank Dennis Thompson, Costin Tanase, Luke Jenkins, and Maureen Ritchey 

for assistance with programming and data processing, Susanne Jaeggi and Martin Buschkuehl for 

task scripts and helpful discussions, and Audrey Tseng, Chris Kino, Claire Hooker, and Borah 

Kim for assistance with data collection.  

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

30 
 

References 

Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Kong E, Larraburo 
Y, Rolle C, Johnston E, Gazzaley A (2013) Video game training enhances cognitive control in 
older adults. Nature 501:97-101. 

Au J, Sheehan E, Tsai N, Duncan GJ, Buschkuehl M, Jaeggi SM (2015) Improving fluid 
intelligence with training on working memory: A meta-analysis. Psychon Bull Rev 22:366-77. 

Barnett SM, Ceci SJ (2002) When and where do we apply what we learn? A taxonomy for far 
transfer. Psych Bull 128:612-37. 

Bastian von CC, Eschen A (2016) Does working memory training have to be adaptive? Psychol 
Res 80:181-94. 

Beatty EL, Jobidon ME, Bouak F, Nakashima A, Smith I, Lam Q, Blackler K, Cheung B, 
Vartanian O (2015). Transfer of training from one working memory task to another: Behavioural 
and neural evidence. Front Syst Neurosci, 9:86. 

Benedict R, Schretlen D, Groninger L (1998) Hopkins Verbal Learning Test–Revised: 
Normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol 12:43-55. 

Brehmer Y, Westerberg H, Bäckman L (2012) Working-memory training in younger and older 
adults: Training gains, transfer, and maintenance. Front Hum Neurosci 6:63.  

Bush G, Whalen PJ, Rosen BR, Jenike MA, McInerney SC, Rauch SL (1998) The counting 
Stroop: an interference task specialized for functional neuroimaging—validation study with 
functional MRI. Hum Brain Mapp 6:270-82. 

Chen T, Li D (2007) The roles of working memory updating and processing speed in mediating 
age-related differences in fluid intelligence. Aging Neuropsychol Cogn 14:631-46. 

Dahlin E, Bäckman L, Stigsdotter Neely A, Nyberg L (2009) Training of the executive 
component of working memory: Subcortical areas mediate transfer effects. Restor Neurol 
Neurosci 27:405-19  

Dahlin E, Nyberg L, Bäckman L, Stigsdotter Neely A (2008a) Plasticity of executive functioning 
in young and older adults: Immediate training gains, transfer, and long-term maintenance. 
Psychol Aging 23:720-30  

Dahlin E, Stigsdotter Neely A, Larsson A, Bäckman L, Nyberg L (2008b) Transfer of learning 
after updating training mediated by the striatum. Science 320:1510-12 

Dale AM (1999) Optimal experimental design for event-related fMRI. Hum Brain Mapp 8:109-
14. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 
 

de Rover M, Pironti VA, McCabe JA, Acosta-Cabronero J, Arana FS, Morein-Zamir S, Hodges 
JR, Robbins TW, Fletcher PC, Nestor PJ, Sahakian BJ (2011) Hippocampal dysfunction in 
patients with mild cognitive impairment: A functional neuroimaging study of a visuospatial 
paired associates learning task. Neuropsychologia 49:2060-70. 

Dweck CS, Henderson VL (1988) Theories of intelligence: Background and measures. 
Champaign-Urbana, IL. 

Fischer JS, Rudick RA, Cutter GR, Reingold SC (1999) The Multiple Sclerosis Functional 
Composite Measure (MSFC): An integrated approach to MS clinical outcome assessment. Mult 
Scler 5:244-50. 

Gold JM, Fuller RL, Robinson BM, McMahon RP, Braun EL, Luck SJ (2006) Intact attentional 
control of working memory encoding in schizophrenia. J Abnorm Psychol 115:658-73. 

Gould RL (2005) Functional neuroanatomy of successful paired associate learning in 
Alzheimer's Disease. Am J Psychiatry 162:2049-60. 

Green CS, Strobach T, Schubert T (2014) On methodological standards in training and transfer 
experiments. Psychol Res 78:756-72  

Greenwood PM, Parasuraman R (2016) The mechanisms of far transfer from cognitive training: 
Review and hypothesis. Neuropsychology 30:742-55. 

Gronwall DM (1977) Paced auditory serial-addition task: A measure of recovery from 
concussion. Percept Mot Skills 44:367-73. 

Hannula DE, Ranganath C (2008) Medial temporal lobe activity predicts successful relational 
memory binding. J Neurosci 28:116-24. 

Hazy TE, Frank MJ, O'Reilly RC (2006) Banishing the homunculus: Making working memory 
work. Neuroscience 139:105-18  

Heinzel S, Lorenz RC, Pelz P, Heinz A, Walter H, Kathmann N, Rapp MA, Stelzel C (2016). 
Neural correlates of training and transfer effects in working memory in older adults. Neuroimage 
134:236-49 

Holmes J, Gathercole SE, Dunning DL (2009) Adaptive training leads to sustained enhancement 
of poor working memory in children. Dev Sci 12:F9-15. 

Howard DV (1979) Category norms for adults between the ages of 20 and 80. Washington D.C. 

Hsu NS, Novick JM, Jaeggi SM (2014) The development and malleability of executive control 
abilities. Front Behav Neurosci 8:221. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

32 
 

Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B (2010a) The concurrent validity of the N-back 
task as a working memory measure. Memory 18:394-412. 

Jaeggi SM, Buschkuehl M, Shah P, Jonides J (2014) The role of individual differences in 
cognitive training and transfer. Mem Cognit 42:464-80. 

Jaeggi SM, Studer-Luethi B, Buschkuehl M, Su Y, Jonides J, Perrig WJ (2010b) The relationship 
between n-back performance and matrix reasoning — implications for training and transfer. 
Intelligence 38:625-35. 

Jonides J (2004) How does practice makes perfect? Nat Neurosci 7:10-1. 

Kelly AMC, Garavan H (2005) Human functional neuroimaging of brain changes associated 
with practice. Cereb Cortex 15:1089-1102. 

Klingberg T (2010) Training and plasticity of working memory. Trends Cogn Sci 14:317-24. 

Kühn S, Schmiedek F, Noack H, Wenger E, Bodammer NC, Lindenberger U, Lövdén M (2012) 
The dynamics of change in striatal activity following updating training. Hum Brain Mapp 
34:1530-41. 

Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and 
conjunctions. Nature 390:279-81. 

Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F (2010) A theoretical 
framework for the study of adult cognitive plasticity. Psychol Bull 136:659-76  

McKendrick R, Ayaz H, Olmstead R, Parasuraman R (2014) Enhancing dual-task performance 
with verbal and spatial working memory training: Continuous monitoring of cerebral 
hemodynamics with NIRS. Neuroimage 85:1014-26. 

Melby-Lervåg M, Redick TS, Hulme C (2016) Working memory training does not improve 
performance on measures of intelligence or other measures of “far transfer”: Evidence from a 
meta-analytic review. Perspect Psychol Sci 11:512-34 

Mishra J, Gazzaley A (2014) Harnessing the neuroplastic potential of the human brain & the 
future of cognitive rehabilitation. Front Hum Neurosci 8:218. 

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity 
and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A 
latent variable analysis. Cognit Psychol 41:49-100. 

Moody DE (2009) Can intelligence be increased by training on a task of working memory? 
Intelligence 37:327-28. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

33 
 

Morris N, Jones DM (1990) Memory updating in working memory: The role of the central 
executive. Br J Psychol 81:111-21. 

Morrison AB, Chein JM (2011) Does working memory training work? The promise and 
challenges of enhancing cognition by training working memory. Psychon Bull Rev 18:46-60. 

Murdock BB (1976) Item and order information in short-term serial memory. J Exp Psychol Gen 
105:191-216. 

Navon D (1977) Forest before trees: Precedence of global features in visual-perception. Cognit 
Psychol 9:353-83. 

Nee DE, Brown JW, Askren MK, Berman MG, Demiralp E, Krawitz A, Jonides J (2013) A 
meta-analysis of executive components of working memory. Cereb Cortex 23:264-82. 

Nee DE, Jonides J (2013) Trisecting representational states in short-term memory. Front Hum 
Neurosci 7:796. 

Noack H, Lövdén M, Schmiedek F (2014) On the validity and generality of transfer effects in 
cognitive training research. Psychol Res 78:773-89. 

Nyberg L, Karalija N, Salami A, Andersson M, Wåhlin A, Kaboovand N, Köhncke Y, Axelsson 
J, Rieckmann A, Papenberg G, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Bäckman L 
(2016) Dopamine D2 receptor availability is linked to hippocampal-caudate functional 
connectivity and episodic memory. Proc Natl Acad Sci USA 113:7918-23.  

Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu 
Rev Neurosci 25:563-93. 

Piekema C, Kessels RP, Mars RB, Petersson KM, Fernández G (2006) The right hippocampus 
participates in short-term memory maintenance of object-location associations. Neuroimage 
33:374-82. 

Pollack I, Johnson LB, Knaff PR (1959) Running memory span. J Exp Psychol 57:137-46. 

Ranganath C, Blumenfeld RS (2005) Doubts about double dissociations between short- and 
long-term memory. Trends Cogn Sci 9:374-80. 

Ranganath C, Flegal KE, Kelly L (2011) Can cognitive training improve episodic memory? 
Neuron 72:688-91. 

Ranganath C, Ritchey M (2012) Two cortical systems for memory-guided behavior. Nat Rev 
Neurosci 13:713-26. 

Raven J, Raven JC, Court JH (1998) Manual for Raven's Progressive Matrices and Vocabulary 
Scales. San Antonio, TX: Harcourt Assessment. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

34 
 

Redick TS, Shipstead Z, Harrison TL, Hicks KL, Fried DE, Hambrick DZ, Kane MJ, Engle RW 
(2013) No evidence of intelligence improvement after working memory training: A randomized, 
placebo-controlled study. J Exp Psychol Gen 142:359-79. 

Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for 
unbiased longitudinal image analysis. Neuroimage 61:1402-18. 

Rudebeck SR, Bor D, Ormond A, O’Reilly JX, Lee ACH (2012) A potential spatial working 
memory training task to improve both episodic memory and fluid intelligence. PLoS One 
7:e50431. 

Sadeh T, Shohamy D, Levy DR, Reggev N, Maril A (2011) Cooperation between the 
hippocampus and the striatum during episodic encoding. J Cogn Neurosci 23:1597-608. 

Schmiedek F, Lövdén M, Lindenberger U (2010) Hundred days of cognitive training enhance 
broad cognitive abilities in adulthood: Findings from the COGITO study. Front Aging Neurosci 
2:27.  

Schneiders JA, Opitz B, Tang H, Deng Y, Xie C, Li H, Mecklinger A (2012) The impact of 
auditory working memory training on the fronto-parietal working memory network. Front Hum 
Neurosci 6:173. 

Schweizer S, Grahn J, Hampshire A, Mobbs D, Dalgleish T (2013) Training the emotional brain: 
Improving affective control through emotional working memory training. J Neurosci 33:5301-
11. 

Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, 
Bilder RM, Toga AW (2008) Construction of a 3D probabilistic atlas of human cortical 
structures. Neuroimage 39:1064-80. 

Shipstead Z, Redick TS, Engle RW (2012) Is working memory training effective? Psychol Bull 
138:628-54  

Spaniol J, Davidson PSR, Kim ASN, Han H, Moscovitch M, Grady CL (2009) Event-related 
fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood 
estimation. Neuropsychologia, 47:1765-79. 

Squire LR (2004) Memory systems of the brain: A brief history and current perspective. 
Neurobiol Learn Mem 82:171-77. 

Toril P, Reales J, Mayas J (2016) Video game training enhances visuospatial working memory 
and episodic memory in older adults. Front Hum Neurosci 10:206.  

Unsworth N, Heitz RP, Schrock JC, Engle RW (2005) An automated version of the operation 
span task. Behav Res Methods 37:498-505. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

35 
 

van Overschelde J, Rawson K, Dunlosky J (2004) Category norms: An updated and expanded 
version of the Battig and Montague (1969) norms. J Mem Lang 50:289-335. 

Vinogradov S, Fisher M, de Villers-Sidani E (2012) Cognitive training for impaired neural 
systems in neuropsychiatric illness. Neuropsychopharmacology 37:43-76. 

Voss MW, Erickson KI, Chaddock L, Prakash RS, Colcombe SJ, Morris KS, Doerksen S, Hu L, 
McAuley E, Kramer AF (2008) Dedifferentiation in the visual cortex: An fMRI investigation of 
individual differences in older adults. Brain Res 1244:121-31. 

Wager TD, Smith EE (2003) Neuroimaging studies of working memory: A meta-analysis. Cogn 
Affect Behav Neurosci 3:255-74 

Wechsler D (1997) Wechsler Adult Intelligence Scale – Third Edition. San Antonio, TX: 
Psychological Corporation. 

Yntema DB (1963) Keeping track of several things at once. Hum Factors 5:7-17. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

36 
 

Fig. 1: Scanned tasks. A. Matrix Updating was modified from the training task version for 

scanning as a working memory updating (WMU) criterion task; a 4-Updates trial type is 

depicted. B. Near transfer was assessed with Spatial N-Back, an untrained WMU task. C. Far 

transfer was assessed with Object-Location Association, an untrained episodic memory task; a 6-

Associates trial type is depicted, including a full encoding phase and the first trial of a retrieval 

phase. 
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Fig. 2: Training trajectories for adaptive training participants on visuospatial and verbal working 

memory updating (WMU) tasks. Error bars denote standard error of the mean. See Materials and 

Methods for task descriptions. Non-adaptive active control participants performed same training 

tasks for the same number of sessions but at a fixed and relatively low, individualized level of 

difficulty. 
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Fig. 3: Adaptive training enhances working memory updating (left) and results in far transfer to 

an episodic memory task (right). Pre- to post-training performance change is plotted separately 

for the adaptive training (AT; green), non-adaptive active control (NA; blue), and no-contact 

control (NCC; red) groups. Error bars denote standard error of the mean. 
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Fig. 4: Adaptive training decreases activation in task-related brain areas. Estimates of load-

dependent activation changes (correct 7-update trials vs. correct 4-update trials) during the probe 

period of the Matrix Updating criterion task are shown for a priori striatal and hippocampal 

regions of interest. Pre-training (dark shading) and post-training (light shading) activation 

estimates are plotted separately for the adaptive training (AT; green) and non-adaptive active 

control (NA; blue) groups. Error bars denote standard error of the mean. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

40 
 

Fig. 5: Exploratory whole-brain analysis of group (AT/NA) by session (pre-training/post-

training) interaction for primary contrast of interest in the Matrix Updating criterion task (probe-

period activation on correct 7-update trials vs. correct 4-update trials). Activation decreases are 

greater for AT than NA participants in bilateral prefrontal, bilateral temporal, and left parietal 

clusters, in addition to bilateral striatum. 
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Table 1: Pre- and post-training scanned task behavioral data by group 

 
Adaptive 

Training (AT) 
Non-Adaptive 

(NA) 
No-Contact 

Control (NCC) 

ANCOVA on 
post-training 
performance, 
controlling for 
pre-training 
performance 

 Pre Post Pre Post Pre Post  

 
M 

(SD) 
M 

(SD) 
M 

(SD) 
M 

(SD) 
M 

(SD) 
M 

(SD) 
Effect of group 

Matrix Updating 
criterion task 

       

7-Updates 
proportion correct 

0.80 
(0.13) 

0.93 
(0.07) 

0.81 
(0.14) 

0.88 
(0.15) 

0.77 
(0.17) 

0.79 
(0.22) 

F(2,52) = 4.50,  
p < .05, ηp

2 = .15 
4-Updates 
proportion correct 

0.91 
(0.08) 

0.95 
(0.07) 

0.89 
(0.11) 

0.92 
(0.08) 

0.85 
(0.15) 

0.88 
(0.16) 

F(2,52) = 1.49,  
p = .24, ηp

2 = .05 
0-Updates 
(maintenance only) 
proportion correct 

0.93 
(0.08) 

0.97 
(0.06) 

0.93 
(0.08) 

0.92 
(0.11) 

0.91 
(0.11) 

0.89 
(0.14) 

F(2,52) = 2.22,  
p = .12, ηp

2 = .08 

Spatial N-Back        

3-Back accuracy 
0.89 

(0.07) 
0.93 

(0.08) 
0.91 

(0.07) 
0.94 

(0.03) 
0.89 

(0.08) 
0.94 

(0.06) 
F(2,51) = 0.11,  

p = .90,  ηp
2 < .01 

2-Back accuracy 
0.94 

(0.05) 
0.96 

(0.05) 
0.93 

(0.05) 
0.97 

(0.02) 
0.92 

(0.08) 
0.96 

(0.04) 
F(2,51) = 0.34,  

p = .71,  ηp
2 = .01 

0-Back accuracy 
0.98 

(0.03) 
0.98 

(0.03) 
0.98 

(0.02) 
0.98 

(0.04) 
0.98 

(0.04) 
0.98 

(0.03) 
F(2,51) = 0.25,  

p = .78, ηp
2 = .01 

Object-Location 
Association 

       

8-Associates 
proportion correct 

0.56 
(0.13) 

0.72 
(0.15) 

0.58 
(0.15) 

0.64 
(0.18) 

0.55 
(0.18) 

0.61 
(0.18) 

F(2,52) = 3.75,  
p < .05, ηp

2 = .13 
6-Associates 
proportion correct 

0.62 
(0.17) 

0.75 
(0.17) 

0.62 
(0.16) 

0.74 
(0.16) 

0.61 
(0.18) 

0.74 
(0.20) 

F(2,52) = 0.05,  
p = .95,  ηp

2 < .01 
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Table 2: Pre- and post-training Matrix Updating criterion task fMRI data by group (as shown in 

Fig. 4): Parameter estimates extracted from anatomically-defined ROIs for the primary contrast 

of interest (probe-period activation on correct 7-update trials vs. correct 4-update trials) 

 
Adaptive 

Training (AT) 
Non-Adaptive 

(NA) 

ANCOVA on post-training 
activation, controlling for pre-training 

activation 
 Pre Post Pre Post  
Region of 
interest 

M (SD) M (SD) M (SD) M (SD) Effect of group 

L caudate 0.43 
(0.53) 

-0.39 
(0.50) 

0.18 
(0.44) 

0.27 
(0.67) 

F(1,35) = 13.13, p < .001, ηp
2 = .27 

R caudate 0.37 
(0.47) 

-0.35 
(0.52) 

0.15 
(0.55) 

0.22 
(0.52) 

F(1,35) = 10.88, p < .01, ηp
2 = .24 

L putamen 0.49 
(0.50) 

-0.29 
(0.58) 

0.30 
(0.47) 

0.18 
(0.42) 

F(1,35) = 10.17, p < .01, ηp
2 = .23 

R putamen 0.44 
(0.58) 

-0.33 
(0.66) 

0.30 
(0.52) 

0.23 
(0.43) 

F(1,35) = 11.09, p < .01, ηp
2 = .24 

L hippocampus -0.01 
(0.63) 

-0.19 
(0.35) 

0.08 
(0.45) 

0.08 
(0.40) 

F(1,35) = 4.66, p < .05, ηp
2 = .12 

R hippocampus 0.02 
(0.73) 

-0.21 
(0.32) 

0.06 
(0.35) 

0.08 
(0.40) 

F(1,35) = 6.05, p < .05, ηp
2 = .15 
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Table 3: Significant regions of activation from group by session interaction for primary contrast 

of interest in exploratory whole-brain analysis of the Matrix Updating criterion task fMRI data 

(as shown in Fig. 5). No suprathreshold clusters were identified in exploratory whole-brain 

interaction analysis for the Spatial N-Back task or the Object-Location Association task. 

  MNI coordinates  
 cluster size 

(voxels) 
x y z t 

L IPL 295 -57 -55 37 4.96 
R striatum 119 12 17 4 4.87 
R MTG 114 54 -19 -14 4.78 
L striatum 162 -9 8 13 4.64 
L MTG 61 -69 -46 -2 4.40 
L SFG/FEF 53 -15 32 52 4.38 
L postcentral gyrus 79 -51 -19 52 4.34 
R MFG 79 42 23 40 4.33 
R STG 109 69 -40 19 4.21 
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Appendix: Pearson’s correlation coefficients for pre-training performance on all untrained tasks (n=56) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Matrix Updating criterion task (proportion 
correct) 

                

  1   7-Updates                 
  2   4-Updates .56                
  3   0-Updates .35 .24               
Spatial N-Back (accuracy)                 
  4   3-Back .42 .30 .20              
  5   2-Back .45 .48 .48 .66             
  6   0-Back .53 .30 .41 .43 .52            
Object-Location Association  
(proportion correct) 

                

  7   8-Associates .10 .13 .06 .25 .19 .18           
  8   6-Associates .35 .46 -.01 .41 .34 .22 .56          
Tasks administered outside of the scanner                 
  9   Letter Running Memory (accuracy) .26 .08 .11 .20 .22 .14 .05 -.01         
10   Counting Stroop (interference effect) -.14 -.13 .01 -.13 -.21 -.29 -.27 -.22 -.36        
11   Global/Local (switch cost) -.05 -.17 -.04 -.17 -.11 -.21 .06 -.01 .07 .02       
12   Operation Span (partial score) -.01 .13 -.03 .28 .11 .09 -.11 .08 .35 -.32 -.10      
13   Change Detection (K) .17 .16 .18 .30 .28 .23 .28 .24 .13 -.34 .16 .29     
14   HVLT-R (percentage retention) .05 .02 .01 .14 .17 .06 .31 .15 .27 -.30 .13 .15 .06    
15   Raven’s APM (number correct) .27 .09 .05 .29 .31 .07 .09 .20 .45 -.36 .05 .33 .26 .21   
16   PASAT (proportion correct) .29 .18 .10 .41 .22 .27 .12 .21 .22 -.27 -.12 .58 .31 .12 .35  
17   Digit-Symbol Substitution  
(number correct) 

.33 .10 .13 .25 .17 .29 .01 .19 .01 -.10 -.10 .15 .19 .03 .09 .32 

Note: Significant correlations indicated in bold (*p < .05; 2-tailed). 


